
Technologisches Gewerbemuseum
Höhere Technische Lehranstalt für

Informationstechnologie
Schwerpunkt Systemtechnik

Diploma Thesis

VIPER
Payment in Restricted Environments

Web Service Engineering
Ebenstein Michael 5BHIT

Augmented Reality Development
Fuchs Peter 5BHIT

Web Architecture
Liebmann Oliver 5BHIT

Virtual Reality Development
Matouschek Marco 5BHIT

Security Engineering
Strasser Alexander 5BHIT

Teacher: List Erhard, Brein Christoph
Realized in 2018/19

Delivery note:
8. April 2019 Accepted by:

VIPER

Statutory declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources and that I have explicitly marked all material which has been quoted either
literally or by content from the used sources.

Location, Date Ebenstein Michael

Location, Date Fuchs Peter

Location, Date Liebmann Oliver

Location, Date Matouschek Marco

Location, Date Strasser Alexander

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 3 / 244

VIPER

Abstract

Virtual- (VR), augmented- (AR) and mixed-reality (MR) are new and fast-growing technolo-
gies. These environments allow the user to create a completely new digital world (VR) and
extend the real world with digital objects (AR). Because of the specialized hardware, headsets,
and custom controllers it is not possible to use existing payment technologies inside these
environments without creating inconvenience or breaking the immersion. To further the de-
velopment of Cross Reality (XR)-applications and make them usable for commercial purposes,
a payment solution for these applications is desired. As there are no technically mature
solutions on the market, VIPER aims to develop a system that gives developers the possibility
of executing payments in said environments. In order to preserve the integrity of the XR
environments, the user must not be forced to remove the headset or exit the applications in
any other way. All necessary information shall be entered from within the XR environments
with appropriate input methods.

Kurzfassung

Virtual- (VR), Augmented- (AR) und Mixed-Reality (MR) sind neue, schnell wachsende Tech-
nologien. Diese ermöglichen es dem Nutzer, neue, digitale Welten zu erstellen (VR) und
die bereits existierende, reale Welt mit virtuellen Gegenständen zu erweitern (AR; engl., to
augment = vergrößern). Aufgrund spezialisierter Hardware, Headsets und angepasster Con-
troller ist es nicht möglich, existierende Zahlungsmethoden innerhalb dieser Umgebungen
zu verwenden, ohne Unbequemlichkeiten für den Nutzer zu kreieren oder das Erleben der
virtuellen Welt zu unterbrechen. Um die Entwicklung von XR-Applikationen voranzutreiben
und einen kommerziellen Betrieb zu ermöglichen, wird eine Zahlungsmöglichkeit für diese
Applikationen benötigt. Da es auf dem Markt momentan noch keine technisch ausgereiften
Lösungen gibt, ist es VIPER’s Ziel, Entwicklern Zahlungen in XR-Umgebungen zu ermögli-
chen. Um eine fortlaufende Nutzererfahrung der Applikation gewährleisten zu können, darf
der Nutzer nicht dazu genötigt werden, das Headset abzunehmen oder die Applikation auf
irgendeine andere Art zu verlassen. Jegliche benötigte Information soll über angemessene
Eingabemethoden in der XR-Umgebung selbst eingegeben werden können.

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 5 / 244

VIPER

Acknowledgment

At this place we want to thank our teachers at the Technologisches Gewerbemuseum (TGM)
and especially our advisor Erhard List and co-advisor Christoph Brein, who provided us
with both technical and moral support throughout the project. We also want to thank our
partner and project initiator Christian Schleining, who helped us throughout the project,
offered valuable feedback and brought up new ideas. Besides the people directly involved
with the project, we also want to thank all the people that have reviewed our work and
provided feedback. We want to thank our main sponsor A1 Digital, who gave us access to the
Exoscale cloud service, which allowed us to test and develop this project within a real-world
environment.

Ebenstein 7 / 244

VIPER Contents

Contents

1 Introduction 15
1.1 Motivation . 15
1.2 Aim of This Work . 15
1.3 Methodology and Approach . 15
1.4 Terminology . 16
1.5 Structure . 16

2 Design Concept 19
2.1 Problem Statement . 19
2.2 Standalone Solution . 20
2.3 Cloud Solution . 21

2.3.1 Cloud Services . 22
2.3.2 Web Application . 22
2.3.3 Client Library . 22
2.3.4 Demonstration Applications . 22

3 Business Potential 25
3.1 Payment Model . 25
3.2 Target Customers . 26

4 Virtual Reality 27
4.1 Introduction . 27

4.1.1 Fields of application . 28
4.2 VR Technologies . 30

4.2.1 head mounted display (HMD) . 30
4.2.2 Software and Peripherals . 31
4.2.3 Development Environments supporting VR Development 32

4.3 Concept and Objective . 33
4.3.1 Competition . 33
4.3.2 User Interaction . 34
4.3.3 Authentication . 34
4.3.4 Mockup . 35

4.4 Used Technologies . 36
4.5 Implementation . 36

4.5.1 Design . 36
4.5.2 Interaction . 39

Ebenstein 9 / 244

Contents VIPER

4.5.3 User Experience . 42
4.5.4 Payment Process . 43

4.6 Testing . 45

5 Augmented Reality 47
5.1 Introduction . 47
5.2 State of the Art . 48

5.2.1 Fields of Application . 48
5.2.2 AR Technologies . 50
5.2.3 AR-Devices . 54
5.2.4 AR-Software Development Kits (SDKs) 55
5.2.5 Development Environments . 58

5.3 Design Concept of the Implementation . 59
5.3.1 AR Technology . 59
5.3.2 Development Environment . 59
5.3.3 AR-SDK and -Device . 59
5.3.4 Mockup for an Implementation . 60

5.4 Implementation . 61
5.4.1 Login and Start Menu . 61
5.4.2 Settings . 63
5.4.3 Demo Application for Purchasing Virtual Items 64
5.4.4 Demo Application for Purchasing Real Items via a QR-code 71
5.4.5 Messaging . 72
5.4.6 Payment Process . 73

5.5 Testing . 76
5.5.1 Manual Testing . 76
5.5.2 Automated Testing . 77

6 Back End and System Design 79
6.1 System Architecture . 79

6.1.1 Architecture Patterns . 79
6.1.1.1 Monolithic Architecture . 79
6.1.1.2 Microservice Architecture 81

6.1.2 System Design . 82
6.1.2.1 Requirements . 82
6.1.2.2 Design Overview . 82

6.2 Implementation Technologies and Frameworks 84
6.2.1 Java and Spring . 84
6.2.2 Spring Cloud and Netflix OSS . 85

6.2.2.1 Introduction . 85
6.2.2.2 Usage of Deprecated Spring Cloud Components 85
6.2.2.3 Spring Cloud and Netflix OSS Components Used in the Project 85

6.3 Data Persistence . 87
6.3.1 Introduction . 87
6.3.2 Database Architecture . 88
6.3.3 Databases Selection . 91
6.3.4 Security . 92

10 / 244 Ebenstein

VIPER Contents

6.3.4.1 MongoDB Security . 92
6.3.4.2 Frugal Data Storage . 93
6.3.4.3 Future Security Improvements 93

6.3.5 Database Access . 94
6.3.5.1 Library Used for Database Access 94
6.3.5.2 Creating the Documents . 94
6.3.5.3 Database Repositories . 95

6.4 Service Communication . 97
6.4.1 Synchronous or Asynchronous Communication 97
6.4.2 Communication Technologies . 98

6.4.2.1 ReST communication . 98
6.4.2.2 Spring ReST Interfaces . 98
6.4.2.3 ReST Requests With Feign 99

6.4.3 Security . 101
6.4.3.1 Communication Between Exoscale Instances 101
6.4.3.2 Communication Over TLS . 101

6.5 External Communication . 102
6.5.1 Communication Technologies . 102

6.5.1.1 Using ReST . 102
6.5.1.2 JavaScript Object Notation (JSON) data format 102

6.5.2 Zuul API Gateway Service - Routing 103
6.5.2.1 Zuul and Eureka . 103
6.5.2.2 Zuul Routing . 103
6.5.2.3 Disabling Individual Routes 104

6.5.3 Authentication Service . 104
6.5.3.1 Authentication Service Database 104
6.5.3.2 Password Hashing . 105
6.5.3.3 Authentication Service User registration 106

6.5.4 Login Handling at the Authentication Service 106
6.5.4.1 Using Spring Security . 106
6.5.4.2 Choosing an Authentication Technology 107
6.5.4.3 Authenticating User Login Requests 108

6.5.5 Authentication at the API Gateway . 111
6.5.5.1 The JWT Authentication Filter 111
6.5.5.2 Zuul Authentication Filter 112

6.5.6 API Service . 113
6.5.7 Security . 113

6.5.7.1 Exoscale Firewall . 113
6.5.7.2 Using HTTPS . 114
6.5.7.3 CORS . 114

6.6 Infrastructure Services . 116
6.6.1 The Configuration Service . 116
6.6.2 Service Registry with Eureka . 117

6.7 Payment Technologies and Services . 119
6.7.1 Payment Requirements . 119
6.7.2 Value Transfer . 119
6.7.3 Storing Payment Information . 123

Ebenstein 11 / 244

Contents VIPER

6.7.3.1 Raw Data . 123
6.7.3.2 Digital Wallets . 123
6.7.3.3 Vaulting Payment Methods 123

6.7.4 Payment Flow . 124
6.7.4.1 Centralized Flow . 124
6.7.4.2 Indirect Flow . 125

6.7.5 Payment Service Provider Comparison 126
6.7.6 Payment Broker Service . 129
6.7.7 Braintree Service . 131

6.7.7.1 Account storage . 131
6.7.7.2 Braintree Vaulting . 133
6.7.7.3 Payment Execution . 135

6.8 Web Services . 138
6.8.1 Service Design . 138
6.8.2 Customer Web Service . 138
6.8.3 Developer Web Service . 140

6.9 Cloud Infrastructure . 142
6.9.1 Cloud Service Providers . 142

6.9.1.1 Requirements . 142
6.9.1.2 Choice . 143

6.9.2 Exoscale . 143
6.9.3 Version Control . 143

6.10 Service Integration and Deployment . 144
6.10.1 Containerization . 144

6.10.1.1 Docker . 145
6.10.1.2 Docker Machine . 146

6.10.2 Continuous Integration (CI)/Continous Delivery (CD) 147
6.10.2.1 Gitlab-CI . 148

6.11 Monitoring and Logging . 150
6.12 Testing . 151

6.12.1 Integration Testing . 151
6.12.2 Database Testing . 152

6.13 Client Library . 153
6.13.1 Programming Languages and Technologies 153
6.13.2 Client Library Implementation . 153

7 Web Application 157
7.1 Introduction . 157
7.2 Design . 158

7.2.1 Material Design . 158
7.2.2 Colors, Fonts and Icons . 159

7.3 Technologies and Frameworks . 162
7.3.0.1 Framework Comparison . 163
7.3.0.2 Angular . 165
7.3.0.3 Typescript . 166
7.3.0.4 Libraries . 167

7.4 Architecture . 167

12 / 244 Ebenstein

VIPER Contents

7.4.1 Interface . 167
7.4.1.1 Register and Login Form . 168
7.4.1.2 Developer Pages . 173

7.4.2 Services . 178
7.4.2.1 User Manager . 178
7.4.2.2 Payment Service Integration with Braintree 179

7.4.3 Routing . 182
7.5 Testing, CI and CD . 185

7.5.1 Unit Testing . 185
7.5.2 End-to-End Testing - Protractor . 187
7.5.3 Continuous Integration and Continuous Deployment 188

8 Project Management 191
8.1 Different Project Management Models . 191

8.1.1 Waterfall Model . 191
8.1.2 Agile Model . 192

8.2 Agile Project Management . 193
8.2.1 Sprints . 193
8.2.2 Documentation . 194

8.3 Project Management Tools . 196
8.3.1 ZenHub . 196
8.3.2 Toggl . 196

9 Conclusion and future work 199
9.1 Conclusion . 199
9.2 Future work . 199

Glossary 201

Acronyms 204

Bibliography 208

Ebenstein 13 / 244

VIPER Chapter 1. Introduction

Chapter 1

Introduction

1.1 Motivation

This project was initiated by Christian Schleining, who through his working experience with
Virtual Reality (VR) has spotted the potential for Cross Reality (XR) E-commerce. The quickly
rising popularity of XR and technology innovations in its field have made it a potential
new marketplace for online commerce. At the same time e-commerce stores likes Amazon
have experienced a huge gain in user numbers. Digital products on mobile devices and in
computer games have gained similar popularity. Both e-commerce and digital products are
only available on Personal Computers (PCs) or mobile devices. Thus an integration of the
online commerce market for XR would enable a new way of online retail and close a market
gap.

1.2 Aim of This Work

The goal of this project is to create a servicewhich enables payment in restricted environments.
This service consists of a website, which allows the user to insert payment-relevant data, like
bank accounts and verification codes, a back end which handles the payment options and two
applications which show the functionality of the service in both Augmented Reality (AR) and
VR. Since the main problem of payment in these environments is the impossibility to input
much data fast, the claimed identity cannot be verified easily. VIPER provides a solution to
this problem as it uses only pin-codes and patterns to verify the user’s identity. Thus the
project needs to provide a service which can be implemented to XR-applications very easily.

1.3 Methodology and Approach

This thesis is split into several parts, each one associated with a certain team member. Each
of these parts consists of the following three steps to complete the thesis.

Research of Existing Technologies and Requirements Payment, web development and
VR and AR are very advanced technological fields. There are some technologies that simplify
developing for these environments. Thus the first step is gathering information about these

Ebenstein, Fuchs, Strasser 15 / 244

Chapter 1. Introduction VIPER

technologies and research the requirements needed to develop the service and its correspond-
ing parts. This research is very important for the later stages of the project thus they are
reviewed within the first sprint.

Design Process In the next step, the design choices and possibilities are elaborated. The
resulting design concepts includes diagrams and mockups . Also, the corresponding tech-
nologies for development are selected in this step. While these concepts are decisive for the
implementation they still have to be reviewed throughout the implementation process and
are adjusted when needed to ensure the correctness of the design decisions.

Implementation and Evaluation The last step is the implementation of the design which
also includes code snippets. Since the project team consists of five person there are several
dependencies between teammembers, which are handled via the projectmanagementmethod
Scrumban. Throughout the implementation phase and especially after this step, the evaluation
is done by the team, the advisers and the project’s client.

1.4 Terminology

Throughout this work certain terms are used to describe the VIPER system with meanings
deviating from the standard definitions.

Customer: The person who uses the VIPER service to pay for item in applications which
support it.

Organization: A group or legal entity, registered at VIPER, which can receive payments
via their registered applications.

Developer: The member of an organization who develops applications.

User: A person registered at VIPER. This can be either a customer or a developer.

Application: An application that is registered to an organization and has an Application
Programming Interface (API) key with which it gets access to the VIPER payment API.

1.5 Structure

This thesis is split up into multiple chapters focusing on specific aspects of the project.
Chapter 2 consists of the general design concept of the product. This chapter starts off with
the problem statement that led the team to develop VIPER. The different designs approaches
are shown and compared and the final decision is explained.
Chapter 3 shows the business potential of VIPER and describes the business model of the
project. In this chapter, the payment model and target customers are shortly explained.
Chapters 4 and 5 include the research, design and implementation of the demonstration
applications for AR and VR. They also explain the difficulties that come with payment in
restricted environments.

16 / 244 Ebenstein, Fuchs, Strasser

VIPER Chapter 1. Introduction

Chapter 6 covers all aspects of the back end, its architecture, the payment process and all
associated technologies.
Chapter 7 explains the creation of a web application and especially the challenges that come
with this process. It also states the general workflow and design concepts to realize these
kinds of applications.
In chapter 8 the project management model used in the project is explained and the different
sprints are shortly documented. Additionally, this chapters includes an explanation of the
used tools for time and project management.
Finally, chapter 9 concludes the thesis and gives insight into the work done and provides an
outlook on the future work of this project.

Ebenstein, Fuchs, Strasser 17 / 244

VIPER Chapter 2. Design Concept

Chapter 2

Design Concept

2.1 Problem Statement

VR and AR, collectively called XR, offer the ability to expand and, as the name implies,
augment the existing world. With XR, it is possible to dive into virtual worlds and do things
unimaginable in the real world and expand reality. Unfortunately, these environments come
with certain restrictions. State-of-the-art VR, and also most of the more advanced forms
of AR, require the user to wear a headset, which can restrict the ability to interact with the
real world. This problem is primarily applicable on VR. Thus executing payment in such an
environment is difficult, since one cannot enter the required payment information, which
is primarily available outside of it (e.g. a credit card number). In order not to interrupt the
experience or the workflow of the user, it’s crucial to ensure that the headset does not have to
be taken off or the environment left in any other way. When setting up conventional online
transactions, the user can either use a credit or debit card, for which they have to take out
their wallet and enter the numbers on the card, or they can use online payment services like
PayPal, which requires them to submit their credentials. The former option is difficult, since
the user has to interact with the real world and read the payment card numbers. Another
difficulty prevalent in both options is the input of information. AR and VR environments
are usually controlled with special controllers, which offer little input possibilities. Thus
entering the information would require the user to use a virtual keyboard and navigate it
with the controllers. Since most card numbers have at least 16 digits and email addresses and
passwords tend to be no different, this task can quickly become arduous and prevent users
from buying things. A method for payment in these environments is needed, that requires
no interaction outside them and offers security with as little input as possible. Furthermore,
these inputs have to correspond to the environments abilities and workflows in order to
seamlessly fit in and not disturb the experience.

Ebenstein 19 / 244

Chapter 2. Design Concept VIPER

2.2 Standalone Solution

Figure 2.1: Standalone solution software architecture

The first design approach was a standalone solution, which would run as a service on each
users PC. The software architecture of this service can be seen in Figure 2.1. The main class
of this architecture is Client Application which acts as a interface for the user and needs to be
implemented for each Operating System (OS), where the payment information is entered.
The heart of this solution is the Payment Manager, a service running in the background,
which offers a Representational State Transfer (ReST) interface for other applications. This
service manages all user accounts, payment accounts and executes the transactions. Each VR
Application would have to use a VR interface, which is implemented as a software library for
different graphic engines.

The advantages of this solution are:

• No infrastructure is needed, since it is running on client machine

• Fast connection, because most parts run off-line and on the same device

• Less security threats, because only minimal data gets send from the device

20 / 244 Ebenstein

VIPER Chapter 2. Design Concept

The disadvantages include:

• Deployment requires the installation of the services

• Updates need new installations, since it runs locally

• Difficult to monetize, because it runs mostly offline

• Using different devices requires re-entering the payment information, because there is
no central online data storage

Because the disadvantages of this design clearly outweigh the advantages it was decided
not to use this solution and thus this solution is not further elaborated.

2.3 Cloud Solution

It was decided that the project should be easy to use for both customer and retailer and thus
a cloud-based service solution was developed. The core components of this solution, from a
user perspective, are shown in Figure 2.2 and elaborated in the following sections.

Figure 2.2: Cloud solution component diagram.
1. An Organization creates an account at the VIPER website. 2. The Organization add

payment data to receive payments. 3. A Customer creates an account at the VIPER website. 4.
The Customer adds payment accounts for future use. 5. The Customer uses an VIPER
compatible application that implements the VIPER library. 6. Inside this application the
Customer actives a payment flow, selects a previously entered payment account and enters
authentication data for it. The transaction with all data needed is sent to the VIPER service.
7. The transaction is executed by the VIPER service and the money is transferred to the

organization.

Ebenstein 21 / 244

Chapter 2. Design Concept VIPER

2.3.1 Cloud Services

The cloud service is the heart of this solution, since all other components communicate with
the service at all times. The service is responsible for saving the information entered in the
web application securely and providing content and data for it. The main task of this service
is to use the payment information to execute transactions that transfers money from the
Client to the Organization. These transactions get initiated by the client library, which is
covered in the next section. Deploying the service in the cloud has several advantages:

• High availability, because of the scalability in the cloud

• Centralized data storage, availability across devices via the Internet

• Plug & Play: no installations necessary

• Monetization possible, because all transactions are centralized

The disadvantages of a cloud-base service are:

• Legal & Security responsibility, because the transactions are made on the VIPER service
instead of the client’s machine

• High infrastructure costs, since cloud-services are not cheap

• Payments depend on the VIPER service and are not executable without it, since the do
not have any business logic implemented locally

2.3.2 Web Application

The goal of this project part was to provide a tool, which is able to implement all services
provided by VIPER. This tool would define a unified resource for clients and developers to
administrate their data. The decision was to create a website. Furthermore it should support
a broad spectrum of devices to address a big audience. For the best User Experience (UX) the
website was designed to be intuitive, accessible and responsive.

2.3.3 Client Library

The goal of this project was to make payments in AR and VR applications as easy as possible
for developers. It was therefore important to develop a client library which developers
can integrate in their applications to communicate with the VIPER services. Even though
they client library is not necessary for communication with the back end, it minimized the
development effort of developers trying to use the VIPER payment system. To allow for
compatibility with a wide variety of VR and AR applications the client library is implemented
using widely accepted technologies usable on a wide range of platforms.

2.3.4 Demonstration Applications

To show potential customers the possibilities of our product there are two demonstration
applications. These also show developers how they can implement VIPER into their appli-
cations. Since our product can be used for both VR- and AR-applications, there will be one

22 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Chapter 2. Design Concept

application for each technology. Both of these are connected to the client library thus it is
possible to provide clients with the full experience of purchasing virtual objects.

The VR-demonstration focuses on showcasing the benefit of implementing VIPER into
VR-applications, by simplifying the payment process from the customers perspective. A
user is placed into a virtual showroom, displaying various technical devices available for
purchase. They can roam freely and select items on demand, which they can purchase after
authenticating.

The AR-demonstration is furthermore split into two parts. The first part allows customers
to place virtual items directly into the real environment and thus purchase them via inter-
action. The second part is based on scanning codes like a Quick Response-code (QR-code).
When such a code is recognized the payment process is started. The AR-demonstration does
not completely fit the concept of VIPER since the environment has a useful input source
(the mobile device’s screen) and thus rather functions as a proof that VIPER also works for
AR-applications.

The payment process consists of selecting a payment account and verifying it via a code
(pattern or pin) which is set in the web application. The type of the code is defined by the
developer of the application.

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 23 / 244

VIPER Chapter 3. Business Potential

Chapter 3

Business Potential

Almost all Payment Service Providers (PSPs) charge the Organization by receiving a cut off of
each payment (see Figure 6.7.2). This makes sense, since this hides the underlying payment
services from the customers and puts the overhead on the retailer’s side. Customers could
also be charged directly for using the platform via a subscription, but this can create the
impression of having to pay twice and thus is undesired. Because of this it was decided to
target the Organizations as paying customers of VIPER.

3.1 Payment Model

There are three possible payment models, in which VIPER can charge their customers.

Fixed Organization could be charged for creating an account and then use the VIPER
service without having to pay again. This would be great for the Organization, since they have
perfectly predictable costs. To cover the costs for running VIPER and also make profit, this
fixed price would have to be set very high. This makes it difficult for smaller Organizations
to use the service and also testing the service for a few months is not possible or would be
expensive for VIPER. Another option is to pay a fixed price per Application, but this would
also introduce the same problems and only be effective if bigger Organizations always had
more applications.

Subscription Another option is to offer subscriptions for Organizations to use VIPER. These
subscriptions would be fixed price and allow for a range of transaction per month, for example
1-2 million. The subscription could also be per Application, thus introducing flexibility. This
would introduce calculable expenses for the Organizations and calculable income for VIPER.

Per transaction The last option is to charge the Organization by adding a small fee for
each transaction. This is advantageous for it scales with the demand of the Organization
and is also proportional to the underlying Organization-size. This means small Organization
have to pay less and large Organizations have to pay more. Furthermore, the Organizations
only have to pay if they get paid through VIPER. Because of the flexibility and fairness of this
options, it was decided to use this method in the future.

Ebenstein 25 / 244

Chapter 3. Business Potential VIPER

3.2 Target Customers

There are multiple possible types of organizations that could be targets for VIPER.

Companies VIPER could be interesting for medium to large size companies in either the
computer game industry, retail industry or any other online-present companies. Since the
main income source of these companies is online-retail, they want to reduce the cost of
online transactions as much as possible. This means the additional fees per transactions
through VIPER are disadvantageous for them. Furthermore, they will most likely already
have implemented online payment methods for theirs services and thus it may be cheaper
for them to implement the functionality of VIPER themselves, introducing complete control
over their system.

Small groups or individuals Small groups or even individual developers could be more
interested in VIPER than companies. These targets usually have few resources and want to
spent the ones they have on developing their applications. Thus VIPER poses an easy-to-use
payment solution for them, without requiring any infrastructure and little implementation
effort. This is why this target group should be focused on primarily.

26 / 244 Ebenstein

VIPER Chapter 4. Virtual Reality

Chapter 4

Virtual Reality

4.1 Introduction

Virtual Reality (VR) is a new and rapidly growing technology, that has started to gain traction
over the past few years. It revolves around the principle of placing a player into a virtually
constructed world, that aims to create a vivid experience comparable to the ’real’ world. In
some cases, the player is even placed in a virtual depiction of the real world, as can be seen in
4.1.

Figure 4.1: VR application showing the Eiffel Tower in Paris[159]

The current main uses for this technology besides video games are military and medical
training applications, education and the virtual depiction of real world places.

Matouschek 27 / 244

Chapter 4. Virtual Reality VIPER

Figure 4.2: A head mounted display (HMD)[160]

To create an immersive experience, the user wears a head mounted display (HMD) that
covers the whole area of sight, focusing the attention onto the displays in front of their eyes.
The goal is to create a Field of view (FOV) of the user that comes close to reality. The field
of view is the angle at which a person is able to see and perceive. In most humans the FOV
ranges from around 200° to 220°, with a binocular vision of about 110°. The binocular vision
describes the area in which the sight of both eyes overlaps and what HMD manufacturers of
HMDs try to maximize, as it results in a more realistic experience. The lenses used in the
HMD play a big factor in increasing immersion for the user. Depending on the thickness and
distance to the eyes, the FOV as well as the dimensions of the HMD can vary greatly. The
current leaders of the VR market are able to achieve a FOV of about 90°, advancing steadily.
[57]

4.1.1 Fields of application

Art and Cinematography
Movies and videos in VR offer a 360° view of the environment and are filmed with specialized
camera equipment. Popular applications of this are the live-stream of certain events, such as
the World Chess Championship, adult films and open video platforms.

In addition, a number of art museums around the world are starting to develop interactive
virtual environments in which the user can roam and explore freely and look at intriguingly
presented art.

28 / 244 Matouschek

VIPER Chapter 4. Virtual Reality

Figure 4.3: Beatsaber, a VR game [20]

Gaming
VR arose from the gaming sector and still drives the progress of this technology year by year.
Popular examples such as Subnautica, Skyrim VR and Beat Saber showcase the versatility of
VR in gaming and the current market size of 9.6 billion U.S dollars drew attention of many
investors who started contributing to this rapidly growing technology. What started out as a
fun gadget, with only a few games available, has now be come a part of the gaming industry,
supported by some of the biggest game development studios.

One of the most successful applications has been ’VR Chat’, a game that connects people
online through virtual reality. In this game, the player can customize their character and
is then able to freely roam around the world, chatting with other players along the way.
Although the graphics were far from realistic, the player experienced a connection to other
players that comes close to actuality. Beatsaber, as can be seen in Figure 4.3, is a game in
which the user relies on his reflexes to slash approaching objects. His hand gestures are
tracked by holding two specialized controllers and moving them accordingly.

Education
A great challenge in education is to maximize the motivation in students. One approach
to solving this issue might be the use of VR applications as an interactive and entertaining
part of lessons. Especially at an early age, where first-hand experience is a key factor in
learning, students are able to see different countries, cultures and sights without leaving
their classroom.

The educational opportunities do not stop there, as objects and structures, mechanisms
and many other subjects can be displayed and used for teaching purposes.[168]

Matouschek 29 / 244

Chapter 4. Virtual Reality VIPER

Healthcare
VR in health care can be used both as a training and a therapy tool. Surgeons can for example
train and improve their skills in virtual reality by watching 360° recordings of previous
surgeries. VR as therapeutic treatment is used for multiple conditions, including anxiety
disorder, autism and Parkinson’s disease.

In so-called Virtual Reality exposure therapy the patient is confronted with traumatic
stimuli in order to reduce fear or stress responses. The gamification aspect of VR can also
lead to increased motivation in patients to pursue therapy, especially in regards to physical
activity as a treatment for obesity. [21]

Military
The military utilizes VR mostly as a training tool, offering realistic circumstances of battle
situations while being cost-efficient by not consuming ammunition. The training applications
go as far as to include instructional feedback, informing the trainee when to shoot and to be
alerted.

VR systems are also often used in flight simulators to recreate realistic conditions and
educate new pilots and enhance and train existing skills. [169]

4.2 VR Technologies

4.2.1 HMD

Standard HMD
A standard HMD has a built-in display, sensors and buttons, though the actual processing is
done by the PC it is connected to. While this leads to immobility, it also offers the advantage
of high computational power, resulting in a more vivid and immersive experience. How the
headset is connected to the processing device depends on the manufacturer. Generally HDMI
and USB ports are used to transmit data between the devices.

Compared to other HMD types, they generally come with higher resolution and refresh
rate, as well as a greater FOV, though for a higher price. Current popular devices on the
market are the Oculus Rift, the HTC Vive Pro and the Samsung Odyssey.

Standalone HMD
A Standalone HMD does not require a connected PC or smartphone for delivering a VR
experience to the user. This means that the device itself contains a processor, battery, a
display, gpu, sensors and memory to process various applications. In addition the headset
does not require a cabled connection, resulting in less restriction and a more enjoyable
experience for the user.

Standalone HMDs are limited by their size and therefore lack computational power and
battery capacity. Despite this, they offer a balanced compromise between processing power
and mobility, for a medium price.

30 / 244 Matouschek

VIPER Chapter 4. Virtual Reality

Screenless HMD
Screenless HMDs are the most lightweight of them, with all processing and display being
handled by a smart phone. This brings limitations, as current smart phones simply do not
offer as high of a screen resolution and as much computational power to be able to keep
up with other types of HMDs. While some manufacturers provide input capabilities such as
buttons and touch pads built into the VR device, others rely solely on the smart phone to do
the work.

The current market leaders of screenless HMDs are the Samsung GearVR and the Google
Cardboard, the latter being an affordable minimalist solution comprised of only cardboard
and lenses. [156]

4.2.2 Software and Peripherals

VR SDK
A VR Software Development Kit (SDK) builds the fundamental basis to every VR application.
They assist the development process during design, implementation and testing. As the
included functionality of an SDK heavily depends on the used hardware, companies in the VR
sector created their own SDK for their respective hardware. For example SONYs VR system,
the Playstation VR, is able to utilize six-axis motion sensing, cameras and different types of
controllers only if the SDK supports these features, hence SONY created their own SDK, the
PSVR Dev Kit, in order to cover the support for all these tools the hardware provides.

VR Controller
For many applications the necessity of user inputs arises. While some of the aforementioned
HMDs already offer a built in button, touch pad or other similar peripherals, these simply
do not cover all of the use cases regarding interaction. Therefore wireless controllers were
created.

Depending on the hardware built into the respective HMD the controller is either only
able to detect the direction pointed at or is able to localize its exact position relative to the
worn device. This relative position can directly be translated to the position of the hand
holding the controller, opening new possibilities for increasing immersion in VR, e.g. as the
ability to grab objects can now be implemented into applications.

360° Camera
VR movies, videos and showrooms oftentimes require special camera equipment that is able
to film at a high FOV, optimally at 360°. Depending on the application, there are different
approaches for recording, themost common being two cameras with fish eye lenses connected
back to back and filming simultaneously. The footage is then stitched together and converted
into 360° video material using specialized software. While most products implemented two
cameras filming simultaneously (see Figure 4.4, many others designed technologies with
additional built-in cameras. Depending on the number of cameras used, the postprocessing
and stitching of the footage becomes more and more difficult for the software to handle,
resulting in possibly visible errors and longer processing time.

Matouschek 31 / 244

Chapter 4. Virtual Reality VIPER

Figure 4.4: Samsung Gear 360 [135]

4.2.3 Development Environments supporting VR Development

Unity
Unity is a game engine that offers extensive platform support, including Android, iOS, Mi-
crosoft Windows and many more. With Unity, the user has the ability to create both 2D and
3D applications, developing primarily in C#. The written application can easily be exported
to any platform desired, without the need of any changes, which makes it suitable for cross
platform development.

Unity offers three different license options depending on the required features. ’Personal’
is the most basic license, supporting all major development features for creating applications
for free, as long as the customer’s revenue does not exceed 100.000 $ per year. The priced
licenses ’Plus’ and ’Pro’ include additional professional support, game development courses
and real time statistics and user data of the developed applications. [164]

Unreal Engine
The Unreal Engine has been the choice for development of many triple-A titles over the
past few years. This is most likely due to its powerful graphics and rendering capabilities,
making it more efficient over other competitors in the game engine market. While it offers a
block-building scheme for beginner programmers, most scripting will have to be done via
C++.

In contrast to Unity, Unreal does not offer a free version, instead the developer has to pay
a fee of 19.90 $ per month in addition to five percent of all revenue once the applications are
made profitable. [166]

Lumberyard
Lumberyard is a game engine owned and developed by Amazon and based on the architecture
of the popular CryEngine. It advertises with easy and intuitive use of AWS services and the
integration of Twitch, a popular live-streaming platform. As a fairly new competitor, the
offered community support is not as extensive and the documentation is not as extensive
and intuitive to use compared to other engines.

Lumberyard supports C++ as well as Lua for scripting and programming. With a system
called ‘Gems’, Lumberyard supposedly supports any current, as well as future VR devices,
eliminating compatibility issues. Using Lumberyard is free, though utilizing AWS services
will cost a small fee, depending on the needed features. [52]

32 / 244 Matouschek

VIPER Chapter 4. Virtual Reality

AppGameKit
The AppGameKit is a new tool, optimized for creating 2D environments. While it supports 3D
and VR applications, it still is a work in progress. The editors’ functions are rather limited but
should be sufficient for developing basic applications. As a scripting language AppGameKit
uses its own called AGK Script, which is a type of BASIC dialect. They also provide the option
to code natively with C++ libraries. In addition, AppGameKit supports VR development,
though only for the Oculus Rift and the HTC Vive.

AppGameKit can be bought for a one time fee of 79.99 $, in addition the AGK VR addon is
required in order to develop VR applications, which costs another 29.99 $. [12]

4.3 Concept and Objective

The core concept is to create a demonstrational application for the purpose of displaying
the functionality of Viper and to act as a guideline project for developers implementing the
service. In this application, the user can roam freely inside a virtual room and is able to
purchase displayed objects on demand. This scenario places the user into an electronics
shop/showroom, offering a few appealingly presented technological pieces. One goal is to
design this room in a modern and minimalist fashion, hence only a few items at display rather
than many.

4.3.1 Competition

Despite the recency of the idea that payment in VR can be made possible, some companies
have started to develop prototypes on their own for tackling this issue. So far, there is no
solution providing flexible, simple and extensive payment services to VR and AR applications
for any system yet. While these developed prototypes implement the payment in virtual
environments, universally functioning solutions have yet to be created. Some of these
companies implemented individual solutions for their applications, meaning that these tools
cannot be used universally.

Worldpay

Worldpay is a payment solution prototype that uses the EMV technology to process
payments in VR. Through use of EMV, it is restricted to card payment services. Furthermore,
it only serves as a prototype for future developments and is not a universal solution. The
prototype consists of a demo that implements the purchase of different products. When
purchasing, a card must be chosen, and if a certain amount of money is exceeded, a pin must
be entered.

The pin input was implemented by randomly placing digits around the room, which the
player then had to select. This adds an additional layer of security, as the pin cannot be
recognized by analyzing the head movement of the player from an outside perspective.

AliPay VR
AliPay proposed a concept of paying in virtual reality in 2016, when presenting a prototype
that features payment via nodding and other gestures. After that, a password still had to
be entered for authentication, though the headset could stay on during this. Since the
presentation of the prototype, no progress has been made public.

Matouschek 33 / 244

Chapter 4. Virtual Reality VIPER

Payscout VR
Payscout developed an android app that lets the user walk through a virtual reality experience,
such as a shopping mall, a video game or a VR movie and then lets them purchase (physical)
goods via VISA Checkout. It is constrained by the system of the device as well as the payment
option, as it only supports the option VISA Checkout on Android devices.

Conclusion

The concept of paying in VR and AR is still at its start, but the interest in developing
universal solutions is growing. As of today, there is no platform that provides the required
services with the support for a diversity of platforms and payment services. The aforemen-
tioned prototypes to present functioning implementations of payment processes in VR are
not universally applicable solutions for existing applications.

Viper has advantages in different areas over these prototypes, starting at the range of
supported payment services. PayPal is the first choice for online payments, though none of
the prototypes have implemented payment via PayPal yet. They also lack hardware support,
focusing on either Android or via PC functioning devices. This leads to a smaller target
audience and less value on the market. The mentioned prototypes were created a year ago or
earlier and since then no progress of a universal solution has been made public .

4.3.2 User Interaction

Since the user must be able to not just move, but also to interact with certain objects, a
method to process user inputs had to be implemented. The options are either interaction by
simply looking at objects/a general direction for a certain period of time, using a controller
or utilizing the built in buttons of the HMD. While controllers provide great features, such
as more intuitive use, interaction independent of viewing angle and many more, for this
specific use case it proves to be unsuitable as the only interaction. Not every HMD is shipped
with or even supports VR controllers, thereby only supporting them would drastically shrink
the target audience reached with the demo, hence on-board button support was chosen
to be implemented as well. The third method of interaction by looking at objects was not
implemented, due to poor practicality and usability.

When moving the player, there are two main approaches. One of them is to simply move
the player towards a chosen direction by a static, given distance, while the other allows the
user to choose a location to be transported to.

4.3.3 Authentication

In VR a wide range of authentication methods can be implemented. One approach is to
authenticate via biometric characteristics such as voice as an input method, face or iris
scan. AliPay proposed a concept and implemented a prototype showing the authentication
via iris scan and with it successfully authorizing a payment process. While it is possible to
implemented, it requires specialized hardware for doing so, which not many HMDs feature at
the moment. Hence the approach for authentication falls back to simpler ideas, such as to
input a pin code by looking at the numbers and selecting them.

As the main selling point of Viper is to simplify the payment process and enhance the
users experience, the authentication should have to be as effortless as possible, while offering

34 / 244 Matouschek

VIPER Chapter 4. Virtual Reality

as much security and safety as necessary. Therefore entering user credentials consisting
of an e-mail and a secure password is not an option, as this does not provide the usability,
simplicity and rapidity for the payment process that is required. Alternatives to this are
simpler authentication methods, such as pin and pattern. Even while wearing a HMD, the
user is able to easily authenticate via pin using the buttons provided by the headset or the
controller, as the input is much shorter and simpler compared to an e-mail and a password.

Though this also means, that the user has to be logged in automatically on start of the
application. To solve this, the concept is to implement a way to log into the account manually
once, which is then done automatically afterwards by saving the login information locally.

For this application specifically, the authentication using a pin input is implemented, as
it shows the functionality just as well as a pattern input while being simpler to develop.

4.3.4 Mockup

Figure 4.5: Mockup of the VR Showroom

In order to find a suiting design that fulfills the requirements of the client, a mockup was
created (see 4.5). It displays a top down view of the application, consisting of 2 rooms, the
main room and the so-called VR room. When starting the application, the user is placed
into the entrance section of the room, which is openly connected to the main hall. When
moving forward, the user is presented a section containing TVs and monitors as well as PCs
and laptops. On the right of the main room a door can be found, that takes the player into
the VR room, displaying phones and VR related devices.

The mockup acted as a guideline for design purposes throughout development, though
adaptions were made, which will be described thoroughly later on.

Matouschek 35 / 244

Chapter 4. Virtual Reality VIPER

4.4 Used Technologies

The purpose of this application is to show the fundamentals of the service Viper provides,
while reaching the largest possible audience.

For developing the VR application, the Unity engine was used. Unity supports the devel-
opment for all the largest VR technologies available and with its many features promoting
quick and easy development and community support, it suited the use case for Vipers demo
application. The cross platform support makes it simple to develop for multiple VR platforms
simultaneously and thereby contributes to maximizing supported technologies. In addition,
the used license for Unity is free and therefore does not increase the overall costs of the project.
Since the popularity of Unity is partly driven by its active community, they aim to provide as
much high quality documentation and educational content as possible, in order to encourage
new developers to use their product. This results in simple, concise and comprehensible
documentation for close to all aspects of the development process with Unity.

In order to test the application during development, a HMD was needed. The most
suiting product for this use case was the Samsung GearVR. The GearVR is a screenless HMD
compatible with all Samsung smart phones of the latest generations and offers the best quality
for its price point of around 100€. It has a built in touch pad and buttons for user interaction,
and optionally a controller can be connected to it. As it is developed by Oculus, one of the
market leaders of VR technology, it is supported by their own platform SDK. The GearVR
headset was used in combination with a Samsung Galaxy S9+, as it was provided by a team
member and has sufficient graphics processing capabilities.

4.5 Implementation

4.5.1 Design

Splash Screen

On start of the application, the user is presented with a short splash screen, displaying the
Viper logo. After a few seconds, the scene smoothly transitions into the showroom, placing
the player in the entrance of the main hall.

The transition was implemented using an imported script. As shown in Listing 4.1, to start
the transition the function Fade() has to be executed, with arguments describing the scene
to which should be transitioned to, the transitional color and the duration. This function is
then executed 5 seconds after start of the application, since Start() is executed on startup and
WaitForSeconds(5) being yielded continues to execute it after a given amount of seconds.

1 public IEnumerator Start()
2 {
3 yield return new WaitForSeconds (5);
4 Initiate.Fade("main_scene", Color.black , 1.0f);
5 }

Listing 4.1: Splash Screen Transition

36 / 244 Matouschek

VIPER Chapter 4. Virtual Reality

Room Layout

Figure 4.6: Final Layout

While the initial mockup of the room layout provided a solid foundation for designing
the application, some adaptions were made during implementation, the final design can be
seen at Figure 4.6. Due to time shortage, instead of two separate rooms it was decided to
only create one, though with more content in it than originally planned. On the left side
of the room, additional audio devices were placed to match the TVs. The right area of the
room contains PCs, laptops and various peripheral devices. The player is initially placed in
the entrance area, looking into the main room. The opposing wall is decorated with a poster
displaying the typeface design of Viper.

The room is lit up with four discreet wall lights, of which one is placed in the entrance
area and the others are distributed evenly around the main room (see Figure 4.7).

Matouschek 37 / 244

Chapter 4. Virtual Reality VIPER

Figure 4.7: Initial View of the Showroom

Interior Design Characteristics

To create a soothing and enjoyable experience for the user, the room was furnished using
light and soft colors. These colors create a sense of familiarity, turning an otherwise sterile
and bare room into an enjoyable space. The textures chosen were a lightgray concrete texture
for the walls, as well as a light brown wood texture for the floor (see Figure 4.8). The pedestals
on which the items to be purchased are displayed are colored in an off-white tone, lighter
than the walls and the floor, to highlight the objects on top.

Figure 4.8: Wall and Floor Textures

The assets used for the displayed technological devices are all acquired from external
sources providing free to use 3D models.

In the entrance area, the user is able to accept the purchase of chosen objects and to
authenticate via pin input, as seen in Figure 4.9. The input panels floating over the counter
consist of white buttons, striving for a minimalist design. Below, a table with a cash register
and a few office supplies is placed, to indicate where the items are to be purchased.

38 / 244 Matouschek

VIPER Chapter 4. Virtual Reality

Figure 4.9: Entrance Area and Authentication Panel

4.5.2 Interaction

One of the main features of the demonstrational application is to be able to move through
the showroom, in order to inspect the displayed items, to select them and finally to purchase
them at the checkout. As mentioned, it was decided to move the player by a static distance
each time they press a button. The basis of all interaction implemented in this demo is the
Unity Raycast. With it, all types of interaction, may it be player movement, item selection
or authentication can be implemented. As it proves to be the simplest and most universal
solution to the task, it was used to develop all user interaction.

Regarding the functionality of a Raycast, a quick overview will be given. A Ray object
receives a source position and a direction when instantiated. This Ray, if cast, is then able
to intersect with other objects and detect collision. When Raycast is executed, a previously
defined Ray object with a chosen reach will be forwarded in its direction, to detect possible
intersection with other objects (see Listing 4.2). The hit object, if there is one, will be stored
in the variable hit, which can then be used for further processing.

1 RaycastHit hit;
2 Ray myRay = new Ray(cam.position , cam.forward);
3

4 if (Physics.Raycast(myRay , out hit , reach))
5 {
6 ...

Listing 4.2: Using Unity’s Raycast

Player Movement
To understand movement of entities in Unity, it is important to know how a player generally
is implemented. The application must contain a so-called main camera object. The position
of this object decides the content being displayed, in a way it can be seen as the eyes of the

Matouschek 39 / 244

Chapter 4. Virtual Reality VIPER

player. When it is moved, the displayed content moves with it. All positional attributes of the
camera object are stored in its transform component.

Implementing movement in VR starts by instantiating a ray, just as mentioned before,
after which this ray is cast. The created Ray receives the position of the camera object as its
origin and a chosen distance as its reach. With the function OVRInput.Get(..), provided by the
Oculus SDK, every user input, meaning every button click, touchpad click or drag, etc. can be
checked. It was decided to use a touchpad click for interacting. If the touchpad is clicked, the
position of the main-camera is translated by a given amount, after which its y will be reset to
its previous value, to prevent the player from moving up or down, as shown in Listing 4.3. It
is important to note that this code will only be executed if no object was hit and therefore the
object hit is not defined. This was done to firstly prevent the user from moving when they
interact with other objects and secondly to prevent them from moving outside of the room.

1

2 // Check for Button Input
3 if (OVRInput.Get(OVRInput.Button.PrimaryTouchpad)){
4 float temp = transform.position.y;
5 // Translate forward by a static distance
6 transform.Translate(-cam.forward * 3f);
7 // Set the y value to its previous value
8 transform.position = new Vector3(transform.position.x, temp ,

transform.position.z);
9 }

Listing 4.3: Movement Implementation

Item Selection
Inside the application, the user has the ability to interact with different elements. When the
player wants to select an item, they do so by looking at the object and clicking the touchpad,
assuming the distance to the object is withing the chosen reach of the Ray. By displaying a
text, that a certain item has been selected, the player is notified about the action. An item
can be unselected by simply repeating this process.

Figure 4.10: Object and Assigned Tag

40 / 244 Matouschek

VIPER Chapter 4. Virtual Reality

Before implementing the selection of items, every object available for purchase has to be
assigned a unique tag in order to identify them later on. This is done in the Inspector tab in
Unity by adding a new tag and then assigning it to the corresponding item by choosing it out
of a drop down list of all available tags (see Figure 4.10).

Just like player movement, the selection of items is implemented utilizing the Raycast
functionality. To check whether the selected item is available for purchase, the tag of the hit
object is compared to a previously defined array of strings, containing tags of objects that are
not buyable, for example the default tag ’Untagged’. If the tag is not contained within this
array, the game object corresponding to this tag is fetched.

The function IsSelected()(Listing 4.4) now checks, whether the hit object has been selected
already and depending on this either adds it to an array of selected game objects or removes
it. This array is required to keep track of all selected items, in order to purchase them later
on.

1

2 if (Array.IndexOf(noObj , hit.collider.tag) == -1){
3 GameObject hitObject = GameObject.FindGameObjectsWithTag(hit

.collider.tag)[0]. gameObject;
4 if (! IsSelected(hitObject)){
5 selected.Add(hitObject);
6 } else {
7 selected.Remove(hitObject);
8 }
9 }

Listing 4.4: Object Selection

As soon as an object is selected, the panel for accepting the purchase and authentication
appears in the entrance area. This is done calling a function, that sets the active attribute of a
given object, i.e. the attribute to display that object in the scene, to either true or false, as
can be seen in Listing 4.5.

1 void Hide(GameObject obj)
2 {
3 obj.SetActive(false);
4 }
5

6 void Show(GameObject obj)
7 {
8 obj.SetActive(true);
9 }

Listing 4.5: Showing, Hiding Objects

Matouschek 41 / 244

Chapter 4. Virtual Reality VIPER

4.5.3 User Experience

User Feedback Animations

To inform the user about the selection of an item, a text is displayed briefly containing
the name and whether it was selected or unselected. To look as appealing as possible, the
displayed information slowly fades rather than disappearing abruptly. With the function
FadeCanvasGroup the alpha value of a CanvasGroup component can smoothly transitioned
from one value to another (see Listing 4.6). The default animation time is 1.5 seconds.

1 public IEnumerator FadeCanvasGroup(CanvasGroup cg, float start
, float end , float lerpTime = 1.5f);

Listing 4.6: Signature of the fading method

The panel to be displayed has both a Text and a CanvasGroup component attached to
it, which now need to be acquired using the method GetComponent(). The displayed text is
then changed accordingly, depending on whether the object is contained within the array of
selected items or not. The name of the item is acquired from the hit object, i.e. the object with
which the cast ray collided. Lastly a coroutine is started, fading the fetched CanvasGroup
from an alpha value of one to zero.

1 Text selectText = selectPanel.GetComponent(typeof(Text)) as
Text;

2 CanvasGroup selectCG = selectPanel.GetComponent(typeof(
CanvasGroup)) as CanvasGroup;

3 selectText.text = contained ? "Unselected " + hit.transform.
parent.name : "Selected " + hit.transform.parent.name;

4 StartCoroutine(FadeCanvasGroup(selectCG , 1, 0));

Listing 4.7: Canvas Fade Implementation

Camera Pointer

As it is not always apparent where the center of the camera is located, an indicator was
implemented. Googles GVR SDK provides a simple pointer prefab that is easy to use and
features options to easily customize color and size. The GvrReticlePointer is placed as a direct
child element of themain camera object in order to function properly. This is done by dragging
the prefab into the game object hierarchy below the camera object. On start of the application
it is then automatically rendered in the center of the view as a uni-colored circle. For the
Viper demo application a white pointer was chosen, as it provides the highest contrast to most
interactable objects while still retaining the subtle and comforting ambient of the showroom.
The hierarchy and implementation of the pointer can be seen at Figure 4.11.

42 / 244 Matouschek

VIPER Chapter 4. Virtual Reality

Figure 4.11: Camera Pointer

4.5.4 Payment Process

As the main feature of this application is to demonstrate the functionality of paying in virtual
reality, the payment process has to be implemented. The so-called client library handles all
aspects of integrating the Viper payment service into the demo by acting as the interface
between application and back end.

Figure 4.12: Panel displaying
the Selected Objects

Figure 4.13: Panel for Select-
ing a Payment Account

Figure 4.14: Panel for Authen-
tication

From the user’s perspective, a panel displaying all selected items will show in the entrance
area. If they decide to buy they are presented with another menu in which they can cycle
through all their payment accounts registered under their account. Once chosen, a pin input
panel will be displayed, after which the payment will be processed. A notification informs the
user on whether the payment has been processed successfully or not. It is important to note
that in this application, a default account will automatically be logged in rather than the user
logging in on their own. These described input panels can be seen at Figure 4.12, Figure 4.13
and Figure 4.14.

Matouschek 43 / 244

Chapter 4. Virtual Reality VIPER

For implementing the payment services into the application, the first step is to import all
Client Library source files. First they have to be placed within the Plugins folder of the Unity
project, after which they can be imported as shown in Listing 4.8. Every used function has to
be imported using this scheme.

1 [DllImport("VIPER_client", CallingConvention =
CallingConvention.Cdecl)]

2 public static extern void login(string api_key , string
identification , string password , LoginCallbackDel callback)
;

Listing 4.8: Importing the Client Library

From there on, the next step is to log into an account. The login function provided by
the Client Library is called on start of the application. As referenced below in Listing 4.9, in
this function the given user is logged in and depending on whether the user data matched a
registered account will return either true or false. This value must be saved as it is used in a
further step. Now the user is automatically logged in and can then proceed to purchase.

1 void Login(string name , string password){
2 bool success = login_sync("hyZ Tc5EqpJwOEspjYGYt6lVY9hRm3l"

, name , password);
3 if(success)
4 print("logged in");
5 instance.login_success = success;
6 }

Listing 4.9: Logging the User in

After successfully logging in, the payment accounts can be acquired. Inside the function
GetPaymentAccountsCallback, the accounts are fetched and stored in a global variable to be
accessed at a later point. Due to the format the data is provided by the Client Library, the
string has to be split up into sections. Each payment account is separated using the
n flag and attributes within are separated with a tabulator. The correct way to split the string
and to store the data is shown in Listing 4.10.

1 string [] paymentAccountsArray = paymentAccounts.Split('\n');
2 instance.payment_accounts = paymentAccountsArray;
3 bool temp = true;
4 Array.ForEach(paymentAccountsArray , paymentAccount => {
5 string [] paymentAccountArray = paymentAccount.Split('\t');
6 if (temp)
7 instance.chosenPaymentAccount = paymentAccountArray [0];
8 temp = false;
9 });

Listing 4.10: Receive Payment Accounts

44 / 244 Matouschek

VIPER Chapter 4. Virtual Reality

Inside the function makePayment orders are now being generated. In the case of List-
ing 4.11, these orders have the name of the selected objects to identify them, other than that
they are filled with randomly generated data. The payment is now initiated via the function
make_payment by stating the orders, the payment account chosen and an authentication
string. This string must contain the correct pin code or else the payment will fail.

1 MakePaymentCallbackDel makePaymentCallback = new
MakePaymentCallbackDel(MakePaymentCallback);

2 Order[] orders = new Order[selected.Count];
3 System.Random rnd = new System.Random ();
4 for (int i = 0; i < orders.Length; ++i){
5 orders[i] = new Order("Item " + selected[i].name.ToString (),

rnd.Next(1, 10), rnd.Next (500, 1000));
6 }
7

8 make_payment(orders , orders.Length , "USD", "This is additional
info", instance.chosenPaymentAccount , authentication ,

MakePaymentCallback);

Listing 4.11: Execute Payment

4.6 Testing

The main approach to testing was manually, at it proves to be the best way of reviewing
usability and design choices. Especially immersion must be tested in person, as no test case
could rate the realism of the virtual environment accurately. Manual testing in this context
means to deploy the application onto a device, after which it is tested with or without a
HMD. Since the Samsung GearVR was used, this meant deploying the demo onto the provided
Android test device.

Enabling VR Services
Before any VR application can be started on Android and tested with the GearVR, it first has
to be signed with a so-calledOculus Signature file, osig-file in short. This file enables low-level
VR functionalities that are inaccessible per default. Furthermore it is tied to only one device,
which means that an osig-file has to be generated for each device used. After development
the application can be submitted to Oculus for verification and if approved, an osig-file is
provided that enables these functionalities on all devices.

Oculus provides a service for generating these signature files. As the file is tied to one
device only, they require a unique identification. Android provides every device with an
exclusive device id, which can be acquired using external applications such as "Device ID".
When the device id is discovered, it can be submitted to the osig-generator to receive the
signature file.

The applicaton is then signed by placing this file into the folder Plugins/Android/assets.
Now the application can be started using the device of which the id was submitted.

Matouschek 45 / 244

Chapter 4. Virtual Reality VIPER

Running the Application without an HMD
While testing using an HMD is necessary for many aspects of the application, some do not
require to be immersed in the virtual room. Hence it can be useful to be able to start the
application without the phone being connected to a VR headset.

It is required that at least one application with valid Oculus signature is installed on the
device before this feature can be enabled. The first step is to activate the GearVR developer
mode, which can be found at Settings -> Apps -> GearVR Service -> Storage -> Manage Storage.
The VR Service version has to be pressed seven times, before the option for the GearVR
developer mode is displayed. The error message ’You are not a developer!’ indicates that no
validly signed application has been installed on the device.

Once developer mode is enabled, the application can be run without the GearVR headset.

46 / 244 Matouschek

VIPER Chapter 5. Augmented Reality

Chapter 5

Augmented Reality

5.1 Introduction

Augmented Reality (AR) is a new technology that proposes the idea of computing virtual
objects or images (in the following concluded as “virtual objects”) into the real world. Com-
parable technologies include VR and Mixed Reality (MR) although they have some significant
differences.

Figure 5.1: AR example with text-layers hovering over a rocket-prototype[86]

Fuchs 47 / 244

Chapter 5. Augmented Reality VIPER

AR adds virtual objects to the top layer of the image to create the illusion of these objects
being part of the real world. For example in Figure 5.1, the real world consists of the model of
the rocket as well as the surrounding environment like the people and the room. Additionally,
there are text-layers hovering over the real objects. These are virtual objects (here text-images)
that are projected into the real world via an electronic device, in this case a tablet.

In comparison to AR, VR is fully immersive meaning that the whole environment as well
as the virtual objects are computer-generated. MR on the other hand is very similar to AR but
lets virtual items interact with real world items. Thus virtual items can for example appear
behind real world items in MR while they can not in AR.

5.2 State of the Art

5.2.1 Fields of Application

AR has several fields of application, the most progressed are entertainment, catalogue shop-
ping, manufacturing and maintenance. In the future there could also be several applications
in the areas of robotics, medicine and military (training).[63]

Entertainment

Figure 5.2: AR-dragon at Riot Games’ League of Legends World Championship 2017[31]

For the last years AR has become a big player in terms of entertainment purposes, may it be
games (Pokémon GO[116] or Riot Games’ AR usage in its League of LegendsWorld Championship-
opening-ceremonies 2017 and 2018 [Figure 5.2]), advertisement or news business.

Also, the area of entertainment highlightsmany different implementations due to variable
applications. Thus huge advertisement-augmentations require different algorithms than

48 / 244 Fuchs

VIPER Chapter 5. Augmented Reality

the client-usable games. AR-advertisements, especially when augmented into stadiums for
example, use pre-specified reference points to give the augmentation stability and keep it in
the correct place.[63]

Catalogue shopping
In the earlier days, catalogue shopping was looking through a catalogue, searching for some
nice furniture or looking for toys, both represented through images, hoping that it fits into
the room or looks nice. However, this was not the result all the time which concluded in
unsatisfied customers. Nowadays, AR solves this problem as it is capable of displaying images
as three-dimensional models. The most popular providers in this field are Inter IKEA Systems
(in the following simplified as IKEA) and The Lego Group (in the following just LEGO) with
their AR-catalogues and -applications.

Using the process of image recognition, the AR-application of IKEA recognizes the image
in the catalogue and augments the corresponding objects (mostly furnitures) over the picture.
The user now has the possibility to move these objects through the room and try to fit them
into the space left.

The LEGO-application works similarly. It scans the image on the catalogue, downloads
the corresponding object from the database and projects it into the real world. AR-SDKs then
provide the user with the possibility to interact with the object.

Manufacturing and Maintenance
One of the biggest problems of instructions is that they can be misleading when being
displayed as two-dimensional images or even texts. AR helps to solve this challenge via adding
three-dimensionality to the machines giving the user the possibility to see an animated
version of the machine in front of them. Thus AR enables the possibility of animating
sequences meaning that each step could be shown visually to the maintainer. Boeing already
developed such a systemwhich is “guiding a technician in building a wiring harness that forms
part of an aeroplane’s electrical system”[19], meaning that the company allows technicians
to create cable networks visually assisted by computer-generated images.

Robotics
The algorithm for implementing a virtual object without having a predefined target (so-called
Instant Tracking), Simultaneous Localization And Mapping (SLAM), is already used in robotic
vacuum cleaners, more specifically in recognizing where their resting spot is and where in
the room they currently are.

But AR could also help in the fields of industrial robotics (visualize what exactly the robot
does) and teleoperation. In terms of teleoperation, AR could especially be helpful when
the robot is far away from the user.[19] The user could be able to control the robot with a
visualization of it in front of him or directly control the visualization itself. After finishing
the programming, the program would then be sent to the robot and executed in real time.

Fuchs 49 / 244

Chapter 5. Augmented Reality VIPER

Medical
Even though there are no implemented use-cases for medical purposes so far, there are lots
of possibilities with AR since visualization plays an extremely important part in the medical
field. Pre-operative imaging studies of the patient, such as Computed Tomography (CT)
or Magnetic Resonance Imaging (MRI) scans could be visualized in front of the doctor as a
three-dimensional model in real size.[19] The doctor then could look at the scan from every
possible direction and improve the speed of finding the injury tremendously.

Especially in terms of minimally-invasive surgery, the doctor’s ability to see inside the
patient currently is very limited. AR could help with this problem by giving the doctor an
X-Ray-Vision via the visualization of CT- or MRI-scans.[19]

Military
Especially when training pilots, AR is extremely helpful since it helps to simulate the sur-
roundings of the helicopter/plane making it look as realistic as possible while still working
with the real controls.[63] The goal is to give the pilot the feeling of physically being in an
aircraft.

AR could also simulate opponents on battlefields helping the troops with tactical decisions
as well as improving their shooting accuracy (when simulating the shots as well). After a
training session AR could also help find tactical mistakes and improve the strategies even
more.[63]

Even in times of war, AR could help visualize the position of enemy troops and thus give
some strategic advantages. Via AR, information could be given to each soldier very easily
and could even be personalized. Also, shooting assistants could be implemented, allowing
the soldier to increase its shooting-accuracy and eventually increasing the strength of the
whole army.

5.2.2 AR Technologies

Since the goal of AR is to augment the real world with virtual objects, the main issue of AR is
that the system needs to know the position of the user and what he is looking at[140] to find
the location of the projection.

This process is mostly assisted by a camera, which perceives the environment and sends
the information to the system. The system then calibrates the camera, meaning it analyses
the environment to discover where the camera is currently positioned and what its rotation
is. This allows a precise projection of virtual objects. There are multiple approaches and
therefore solutions to this challenge.

Marker-based AR
As its name states, marker-based AR is based on markers, which can range from QR-codes
(Figure 5.3) over high-resolution images to three-dimensional objects.

50 / 244 Fuchs

VIPER Chapter 5. Augmented Reality

Figure 5.3: Example QR Code for the website https://viperpayment.com/

Even though there is such a huge variety of possible markers the most common are simple
small QR-codes (mostly 5x5 or 7x7). This is due to their good and easy readability - they
are readable under almost all circumstances and within most environments. Additionally,
since computers are better in finding differences in luminance (brightness) than chrominance
(colour)[140]. QR-codes are mainly based on black and white squares (sometimes other
colours are used as shown in Figure 5.3), thus the computer can easily identify it as such.

Marker-based AR is very easy to implement. Due to the large number of image- and
marker-recognizing algorithms (e.g. [130]) and marker-based AR’s stability. Once the marker
is found, the electronic device knows where to compute the virtual object and does not have
to calculate the position every frame. The system then calculates the pose (rotation and
orientation) of the marker continuously to find the pose of the virtual object.[140]

Whilst some implementations detect markers frame-by-frame, applications can save the
location of markers and use this information when locating the marker in the next frame[140].

Location-based AR
Location-based AR is an implementation that starts augmenting the virtual object when
the user enters a specific geographical position and looks into a certain direction. The
augmentation itself also has a fixed location, consisting of longitude, latitude and altitude,
meaning that its augmented position - different tomarker-based AR - is static. The AR-system
has to calculate only the distance of the device’s and the augmentation’s locations.

Additionally, the rotation of the device is important. The augmentation should only be
shown if the user is currently looking at it, meaning that only with a specific rotation the
augmentation should start being processed on the user’s device while otherwise there should
be the normal screen.

Fuchs 51 / 244

https://viperpayment.com/

Chapter 5. Augmented Reality VIPER

Figure 5.4: An example for geographical positions (background courtesy of GoogleMaps)

Figure 5.4 shows an example of when and when not to augment a virtual object into the
real world depending on the device’s rotation. Although both locations are within a distance
of the augmentation, the left position’s rotation is too far off to process the augmentation so
the user can not see it. Due to the other device’s rotation, the augmentation is within its field
of vision and processed on the device.

Marker-less AR
Marker-less AR is probably one of the most difficult algorithms to implement. However, it
still is one of the most known types of AR. This is probably due to its large amount of possible
applications. In contrast to marker- and location-based AR, marker-less AR can be applied to
almost every environment because it functions without a trigger.

The idea of marker-less AR is based on the concept of Simultaneous Localization And
Mapping (SLAM). This has the goal of solving the problem of simultaneously locating the
position of the device and generating its environment. This system tracks the environment
for significant landmarks, such as lines or edges, and combines those into a map where
it positions the camera perspectively. Based on this information, a virtual object can be
computed into the real world and be visualized correctly and flawlessly.[87]

52 / 244 Fuchs

VIPER Chapter 5. Augmented Reality

Figure 5.5: Example
for marker-less AR
with Snapchat’s Bit-
moji[73]

Figure 5.6: Example for marker-less AR with Pokémon GO[27]

Famous applications using marker-less AR, including Snapchat (Figure 5.5) and Pokémon
GO (Figure 5.6) and even the AR-SDKs most mobile devices rely on due to their integration in
the OSs, ARCore and ARKit, provide a marker-less version of AR. This makes including AR
into an application as simple as possible.

Complex Augmentation
Complex augmentation is probably the future of AR as it combines both marker- or location-
based algorithmswithmarker-less algorithms. This allows features such as Extended Tracking
or Google Glass’ virtual information of local sites[49]. Even Google’s Cloud Anchors use a
form of complex augmentation as they are combining location-based AR with marker-less
tracking.

Especially when talking about future AR-applications, complex augmentation is always
part of those systems. May it be Global Positioning Systems (GPSs), where a location-based
augmentation is added to the world both via marker-based or marker-less tracking (e.g.
projecting something relative to street highlights or anywhere on the street, but specifically
on the street) or AR-systems for training in the military, which could display enemy troops
based on their geographical position and other information relative to the environment
(Figure 5.7).

Fuchs 53 / 244

Chapter 5. Augmented Reality VIPER

Figure 5.7: A fictional example of using complex augmentations in a military training session

Also, IKEA’s AR-catalogue is a form of complex augmentation. The image in the catalogue
works as a trigger which starts the projection of the specified object. Then, marker-less
augmentation is used for displaying the furniture in the room creating the Unique Selling
Point (USP) for the application - checking how the furniture looks in the room itself and
whether or not it fits in there.

5.2.3 AR-Devices

In contrast to VR and MR, which both are specifically headset-based, AR has multiple types
of devices it can run on. Those can be separated in mobile-based and head-mounted.

Mobile AR
Mobile AR is probably the most used form of AR. It can be taken to any place.[33] Still, mobile
AR is not the same as portable AR because even though a notebook can be transported from A
to B and is capable of augmenting virtual objects, notebooks do not count as mobile devices.

A mobile device which runs mobile AR can be carried around easily and used in any
environment. One of the best examples for this is the smartphone as it can be transported
and used everywhere relatively easy. Also, tablets count as mobile devices as well since the
user can operate with them almost as easily as with smartphones.

Mobile AR is supported by different AR-SDKs, those mainly being ARCore and ARKit
(and the SDKs depending on them). The huge advantage of mobile AR is its possibility of
being moved to a real-world-environment that cannot be transported to the device. Thus the
possibilities with mobile AR-devices are way bigger than with other devices.

54 / 244 Fuchs

VIPER Chapter 5. Augmented Reality

Head-mounted AR
Head-mounted AR-devices (also called AR-glasses) could count as mobile devices but the
interaction is completely different. They have no display the user can interact with. AR-
glasses have to rely on (predefined) voice- and gesture-based inputs. Additionally, they
“cannot be used and worn on a daily basis for now even though this might change in the
future” (as stated by Alex Kipman in an interview with CNET[139]). Therefore, we are going
to put head-mounted AR-devices in their own category. The main challenge of paying with
head-mounted AR-devices is the lack of an input possibility other than clicking or typing on
a very impractical keyboard. Thus a verification similar to the VR-demonstration needs to be
implemented for this type of devices.

However, the “AR”-part of the term “head-mounted AR” can be misleading as it is often
ratherMR thanAR. The best example here isMicrosoft’sHoloLens, which is capable of scanning
the environment and letting the virtual objects interact with it. But since AR and MR are
very similar, counting head-mounted devices as AR-devices is not that big of a deal. Other
popular AR-glasses includeMicrosoft’s new HoloLens 2,Magic Leap’s Lightwear, theMeta 2,
ODG’s R7 and Google’s Google Glass. Even though there is a wide variety of headsets, most
AR-applications are developed for mobile devices.

AR-glasses do share most of the advantages of mobile AR but the main challenges are
its unavailability for consumers, which is mainly caused by its expensiveness.[71] Also, AR-
glasses are currently not available for consumers due to the unhandiness as the predefined
gestures are very often not recognized or wrongly interpreted.

5.2.4 AR-Software Development Kits (SDKs)

AR-SDKs are implementations of AR-systems. They can further get used in applications or dif-
ferent SDKs. In this section, the term “SDK” will include all three, AR-Software Development
Kits, -frameworks and -libraries.

ARCore
ARCore is Google’s AR-implementation of an AR-SDK. The main goal of ARCore is to make
the development of AR-applications easier. Thus it needs to provide support for some key
features of AR.

Its key capabilities to integrate virtual content into the real world are motion track-
ing, environmental understanding and light estimation.[15] To make this possible, ARCore
implements a Simultaneous Localization And Mapping-algorithm which helps the system
computing the device’s location as well as building its own understanding of the real world. It
tracks so-called Feature Points and uses them to compute the device’s change in location.[15]
Additionally, ARCore supports marker-based tracking via images (and also Extended Tracking)
and shared experiences via Google’s Cloud Anchors.

ARCore provides support for both Android- and iOS-devices. The compatibility gets
determined by the current OS-version. To run on Android, the device must at least support
Android 7.0 (although some devices are only supported if they run Android 8.0), in case of iOS,
the device must at least run iOS 11.0.[16]

ARKit
ARKit is Apple’s implementation of an AR-library. Even though it supports only iOS devices it
still is the biggest competitor to ARCore. This is due to the market share of about 22.85%[100]

Fuchs 55 / 244

Chapter 5. Augmented Reality VIPER

worldwide. This concludes into over a billion AR-capable devices including every iPhone since
the 6s.

ARKit primarily focuses on shared and consistent experiences of both marker-based and
marker-less tracking. Especially the focus on consistent AR-experiences is unique over the
different SDKs. This means that for example a puzzle could be solved in AR and after pausing
the user could return to it without needing to redo the whole puzzle.[18] Also, shared AR-
experiences enable a whole new market, since they allow users to interact with each other
and for example give game-developers the possibility to create multiplayer-games. Next to
ARKit, only ARCore supports the option of “multiuser-AR”. Those changes came with the
release of ARKit 2 in November 2018.

Wikitude
Wikitude is one of the newer AR-SDKs. It includes an implementation of both ARCore and
ARKit. Since this provides Wikitude with a functioning base-system, the focus lies on en-
hancing the algorithms provided by ARCore and ARKit while still supporting both Operating
Systems, Android and iOS. Especially when it comes to object and scene recognition,Wikitude
already launched several updates in which those two algorithms where enhanced.[109] Also,
Wikitude includes support for theWindows Phone-OS.

One of the most important aspects ofWikitude is its big variety as it supports different
marker-based algorithms, location-based tracking, marker-less tracking and also supports
complex augmentations such as extended tracking. To make these features work, the phone’s
OS needs to be at least Android 4.4 or iOS 9.0. The market share is currently at 83% (An-
droid)[99] and 94% (iOS)[151], which is a pretty high number of potential customers.[110]

Additionally,Wikitude supports a very large number of development environments, in-
cluding Unity, native Android developing on Android Studio, native Apple development on
Xcode and other application development frameworks such as Cordova, Xamarin or Titanium.
They even developed their own development environment asWikitude Studio. Also,Wikitude
provides support for AR-glasses such as ODG’s R7[172].

What’s also very important for cross-platform-development isWikitude’s ability to be
developed in Hypertext Markup Language (HTML) and JavaScript (JS), which can be run on
all different Operating Systems since they all provide support for browsers and therefore said
technologies.

Vuforia
Vuforia is pretty similar toWikitude, as it also supports all three mobile OS’, Android, iOS and
Windows Phone. To achieve this, Vuforia also includes support for Android Studio, Xcode and
Visual Studio (VS) and their self-developed Vuforia Studio.[171] Vuforia runs on every mobile
device running Android 4.4+ (83% market share[99]), iOS 9+ (94% market share[151]).

A huge plus of Vuforia is its compatibility with Unity since it is the only AR-SDK that is
implemented in the installer. This support definitely helps Vuforia’s popularity as its probably
the go-to-option for most developers due to its easy accessibility.

What is also very unique forVuforia is its compatibility with theHoloLens (and theHoloLens
2), which is one of the few possibilities to create applications for Microsoft’s newest MR-
product. Vuforia also supports marker-based and marker-less tracking, but, other thanWiki-
tude, no location-based tracking. This removes some of the potential of Vuforia as most of
the future applications are expected to include a form of location-based AR.

56 / 244 Fuchs

VIPER Chapter 5. Augmented Reality

OpenCV
OpenCV is probably one of the most famous libraries when it comes to computer vision and
graphical display. It has the whole package ranging from the detection for augmentation
(Image Recognition, Face Detection, Simultaneous Localization AndMapping) to augmenting
virtual objects to the image. Additionally to this, OpenCV is also used by several of the
proposed SDKs.

The advantages of OpenCV come with its open-source-availability and its large user-base
leading to even more popularity and more implementations. Android and iOS support is
given as well as support for the desktop-Operating SystemsWindows,MacOS and Linux. The
goal of OpenCV is to increase “computational efficiency and with a strong focus on real-time
applications”[115].

Comparison of SDKs

ARCore[15] ARKit[17] Wikitude[172] Vuforia[171] OpenCV [115]

Unity support ++ ++ + ++ ∼

Free-to-use + + ∼ ∼ +

Marker-based AR + + + + +

Marker-less AR + + + + +

Location-based AR ∼ - + - -

Android availability + - + + +

iOS availability + + + + +

Windows Mobile

support

- - + + -

Shared experiences + + - - -

Consistent

experiences

- ++ + - -

Extended tracking + - + + -

Table 5.1: Feature comparison of different SDKs

As seen in this table,Wikitude is probably themost diverse SDK as it supports every feature
except for shared experiences. Also, Google’s ARCore has a large diversity since it just does
not provide support forWindows Mobile-devices and extended tracking. Vuforia’s and ARKit’s
number of features are also very comparable but clearly less than ARCore orWikitude. While
Apple’s ARKit does not provide support for extended tracking andWindows Mobile-devices,
Vuforia includes no support for shared and consistent experiences. Also, both of these SDKs
do not provide support for location-based AR.

Fuchs 57 / 244

Chapter 5. Augmented Reality VIPER

5.2.5 Development Environments

Unity
Unity is an editor for creating games and applications. It is currently the leading development
engine for AR- and VR-applications. Unity supports two- and three-dimensional development
and, which is unique for most development environments, supports deployment for most
popular platforms including iOS, Android, Windows Phone, Windows, MacOS, Linux and
many more. Unity basically supports development and deployment for all platforms across
mobile, desktop, AR, VR, console, Television (TV) and the web.[157] Also, they provide a User
Interface (UI) which includes an all-in-one-format meaning that only one program needs to
be created for all different platforms.

An important aspect of AR-development is Unity’s physics engine, which is capable of
realistic simulations of real-world physics. Thus augmented virtual objects look and behave
more natural giving a better user experience. Also, Unity’s implemented UI-engine makes the
creation of User Interfacesmore simple and creates the possibility of consistent designs, which
makes the application more recognizable and decreases the amount of learning processes the
user goes through as it was stated in [114].

Wikitude Studio and Vuforia Studio
Both Wikitude Studio and Vuforia Studio are browser-based-editors explicitly created for
developing AR-applications. Both editors do have very similar features, which are based on
marker-based projection, more precisely augmentation with two- and three-dimensional
markers. Those markers can then be extended by multiple virtual elements, for example
labels, images, videos, three-dimensional objects and buttons.

Still, they are not the same editors and have somedifferent features, differencing especially
in the required file-types (whereWikitude Studio uses its own file names for markers). Also,
Vuforia’s solution is offline whileWikitude’s requires an internet connection.

However, both editors require a purchased licence for deployment. Since the goal of both
SDKs is to support as many different Operating Systems as possible, both Studios support
export for each mobile OS.

Android Studio
Android Studio is Google’s editor for Android-development. It includes both, a text-editor
as well as a visual editor for graphical design. When developing native Android applications,
Android Studio is the most used development editor as it is developed by Android’s developer
team and featured on its official website.

Additionally, Android Studio has an included emulator and a debugger for the deployed
application which makes testing of both the application and deployability extremely simple.
Also, Android Studio includes built-in auto completion for Android development, resulting in
a better programming experience, and making working with editor simpler.[53]

Xcode
Xcode is for iOS what Android Studio is for Android - the most known and used editor for
iOS-development. Just as Android Studio, it provides the user with a text editor, which is
powered by several programming-supporting algorithms, and a visual demonstration of the
written code via OpenGL. Additionally, Xcode includes an assets catalogue, which helps to

58 / 244 Fuchs

VIPER Chapter 5. Augmented Reality

group the resolutions of images on the project and thus reducing the project size, a quick-
fix-option, static analysis and also provides the user with Continuous Integration (CI). Also,
Xcode consists of an emulator to test the application in a more realistic environment.

5.3 Design Concept of the Implementation

Since state of the art proposed several possible solutions to each problem the team had to
decide what to use for this project.

5.3.1 AR Technology

The first decision was to implement two different applications - one supporting marker-less
AR and the other one supporting QR-codes. These applications were forged into one single
application which was made available for potential customers. Marker-less AR was chosen
due to its popularity, which comes from famous applications like Snapchat or Pokémon GO
that mainly rely on this technology. Additionally, its usability in almost every environment
and not requiring a tracker played a huge role in the decision.

Especially in comparison to marker-based AR, the usability in every environment is
extremely important since there was no interest in forcing the user into having to print an
additional image or even buy a model just to be able to test the application. The argument of
different environments was also the reason marker-less tracking was chosen over location-
based tracking as this method is bound to a specific location.

A QR-code-implementation was chosen as a secondary application as it demonstrates
different real-world use-cases. The main concept was giving the user two different options -
buying virtual objects (via the first application) and real objects (via a QR-code).

5.3.2 Development Environment

It was very important to build an application for both Android and iOS-users to give every
AR-developer the possibility to experience the product. Thus Unity was the chosen develop-
ment environment. The challenge with most of the other environments, especially Android
Studio and Xcode, is the focus on either Android- or iOS-devices. Also, Unity provides the
option of adding multiple scenes into one application and thus the possibility of forging both
applications into one single application.

Another important aspect of the decision was the market share of the chosen technology.
Unity states on their website that over two-thirds of XR-applications are developed with
Unity[157]. The other quite unpopular options,Wikitude Studio and Vuforia Studio, do not
have that much developer-base, meaning that developing for such a service do not fit the
goal of making VIPER available for as many developers as possible.

5.3.3 AR-SDK and -Device

To fit the concept, mobile AR was given priority for two reasons. First, there are a lot more
mobile-AR-applications available and second it is way easier to implement a QR-code-scanner
and an AR-application on a mobile device than on a head-mounted device. Since the amount
of mobile AR-applications and therefore developers is bigger, VIPER’s target market is as well.
A head-mounted device would have fit better for VIPER’s main target group of developments

Fuchs 59 / 244

Chapter 5. Augmented Reality VIPER

for devices with no useful input source. Still, there are not many developers for head-mounted
devices and the acquisition of such a device is very expensive.

For the project it was important that the SDK supportsUnity, so theWikitude-SDKwas used
as the framework. Due to the implementation of both ARCore and ARKit, the SDK provides a
good base as it shows that VIPER can be used with every popular SDK. Although Vuforiaworks
quite similar and has better Unity support,Wikitude was chosen, mainly because of its better
documentation and better device support. Especially when testingVuforia’s demo-application
on the smartphone model “OnePlus 3T”, which according to Vuforia was supporting, the
application did not work whileWikitude’s demo had no errors when running.

The only issue with Wikitude was its price. For development, the project used a trial
version and applied for a Startup-version.

5.3.4 Mockup for an Implementation

Before starting to build the application, the team decided on its looks. Thus a mockup was
created which represents the ideas of the application. It shows the process of purchasing an
object with its different components.

Figure 5.8 in this case mocks the start menu while Figure 5.9 and Figure 5.10 show the
possibilities of displaying an object and switching between different objects. Figure 5.11,
Figure 5.12 and Figure 5.13 show the different steps of the payment process. As shown on
these figures, the idea was to use very similar layouts to decrease the number of learning
processes and also increase the recognition factor.

Figure 5.8: Mockup of the start
menu

Figure 5.9: Mockup of the ap-
plication displaying the first
virtual object

Figure 5.10: Mockup of the
application displaying the sec-
ond virtual object

60 / 244 Fuchs

VIPER Chapter 5. Augmented Reality

Figure 5.11: Mockup of
the buying screen for the
second virtual object

Figure 5.12: Mockup for
the payment-accounts
screen

Figure 5.13: Mockup of
the verification-screen

5.4 Implementation

5.4.1 Login and Start Menu

Design
The login and start menu screens are the first visible screens for the user. They were designed
as simple as possible to remove large learning processes (Figure 5.14 and Figure 5.15).

Figure 5.14: Login
screen of the applica-
tion

Figure 5.15: Start
menu of the applica-
tion

Fuchs 61 / 244

Chapter 5. Augmented Reality VIPER

As visible on Figure 5.14 and Figure 5.15, only three colours were used: Teal, as discussed
in subsection 7.2.2, white and black, which were used to add some contrast to the primary
colour and still keep a simple design that is not too colour-heavy. Also, both screens were
implemented through Unity’s UI to stay as consistent as possible.

Functionality
The main functionality of the login panel and start menu is to give the user the possibility to
log into his account and start the different parts of the application: the settings-page, the
first application and the second application.

Login The login functionality was implemented through the client library. In “Start-
Menu.cs” the method LoginSync calls the client library’s login_sync-method, which logs
in the user (Listing 5.1).

1 bool LoginSync(string name , string password) {
2 return Payment.login_sync(
3 "hyZTc5EqpJwOEspjYGYt6lVY9hRm3l", name , password);
4 }

Listing 5.1: LoginSync-method that logs in the user using its name and password

Start Menu Navigation To give the user the possibility to navigate through the different
parts of the application, the different scenes implemented into Unity were loaded using the
ChangeScene-method inMenuController.cs (Listing 5.2).

1 public void ChangeScene(Button sender) {
2 #if UNITY_5_3_OR_NEWER // >= \emph{Unity} 5.3
3 SceneManager.LoadScene(sender.name);
4 #else // < \emph{Unity} 5.3
5 Application.LoadLevel(sender.name);
6 #endif
7 }

Listing 5.2: ChangeScene-method that allows the user to load a new scene and change to it

Android Accounts
To enhance the User Experience (UX) on Android-devices, some of the functionality of
Android’s Account-Manager was imported (Listing 5.3). This code allows the application
to save information like the user’s name and his password with a specific account type to
an authenticator (which is implemented in every Android device since version 2.0). When
restarting the application, it checks whether a user with the specific account type exists and
if this is the case signs the user in automatically. In Settings.cs, an AndroidAccount-object is
created and then saved in the attribute (static AndroidAccount Account;).

62 / 244 Fuchs

VIPER Chapter 5. Augmented Reality

1 if (Application.platform == RuntimePlatform .\emph{Android}
2 && (! Settings.IsLoggedIn () || Settings.AccountChanged))
3 if (Settings.Account.CheckAccount ()) {
4 VIPERAccount acc =
5 Settings.Account.GetAccount(Settings.CurrentAccountIndex

);
6 bool success = LoginSync(acc.Name , acc.Password);
7 if (success) {
8 Settings.ShowMessage("Successfully logged in as "+acc.Name

);
9 Settings.SetSession(acc.Name);
10 } else
11 Settings.Account.RemoveAccount(acc.Name);
12 Settings.AccountChanged = false;
13 }

Listing 5.3: Automatically log in the user if an account is saved at Android’s Account-Manager

It calls the Java-methods boolean addAccountExplicitly(Account account,string
password, Bundle userdata) (add account), boolean removeAccountExplicitly(Account
account) (remove account) and Account[] getAccountsByType(string type) (get all ac-
counts), which are implemented through the Java-plugin viper.aar. Getting a single account
returns the index of the object in the array.

To add the Account-Manager to the application, the file viper.aar must be placed into the
“Plugins”-folder. This file includes all the requirements needed for adding a VIPER-account.

5.4.2 Settings

In the settings-dialogue, users can manage their payment accounts in the application. The
user can select one of the saved payment-accounts (as explained in the Android Accounts-
section) as the payment account. The settings also include options like hiding the tutorial
and either purchasing one or multiple items.

For displaying the settings, Unity’s UI-elements and the colours discussed in subsec-
tion 7.2.2 were used. There are two versions of the settings: one version for Android with the
Account-Manager (Figure 5.16) and one without it for all other devices (Figure 5.17).

These settings will be used throughout the whole application and can be accessed via
their static variables:

1 public static bool PurchaseMultipleItems {get; set; }
2 public static bool VirtualTutorialFinished { get; set; }
3 public static bool AccountChanged { get; internal set; }
4 public static int CurrentAccountIndex { get; internal set; }

Listing 5.4: Implemented functionality of Android’s Account-Manager (with create, remove and read)

Fuchs 63 / 244

Chapter 5. Augmented Reality VIPER

Figure 5.16: Settings screen
on an Android device (no-
tice the general settings)

Figure 5.17: Settings screen
on any device but Android

5.4.3 Demo Application for Purchasing Virtual Items

The first application implements the main functionality of this demo application. It allows
the user to import virtual items into the real world to give him the possibility of purchasing
these elements via VIPER.

SDK-Implementation
First, the chosen SDK, Wikitude, had to be implemented. Thus the Unity-SDK was down-
loaded from the website (wikitude.com/download)) and implemented via importing the
“Wikitude.unitypackage”-file. Also, the example-project (“Examples/WiktiudeUnityExam-
ple”) was added to the Unity-project. This allowed a starting point from which the application
was built.

Design
The design is an adaptation of the example project. The main differences are some removals
of unneeded content as well as some colours which were changed to match the application.
The result can be seen in Figure 5.18 (in comparison to the old design on Figure 5.19).

Functionality
Most of the functionality is already introducedwith the implementation ofWikitude’s example-
project. This includes detecting a surface panel, dragging objects on that panel and scaling
and moving that object.

64 / 244 Fuchs

VIPER Chapter 5. Augmented Reality

Figure 5.18: Design of the
first application

Figure 5.19: Old design pro-
vided by Wikitude (the key
can only be used for the
demo, it is unusable for our
demo)

Thepossibilities of clicking on anobject and adding anoutline-shader (OutlineShader.shader)
were added to let the user see, which objects are currently selected (Figure 5.20). The user
can also rotate the object, deleting one or all objects, chose if he wants to display only one or
multiple objects and reset the grid when no item is on it. The application includes a tutorial
which gives the user a short introduction so he knows how the application works.

Figure 5.20: Displaying a selected item (in this case a couch)

Fuchs 65 / 244

Chapter 5. Augmented Reality VIPER

Wikitude-SDK
The features introduced withWikitude’s SDK are the key technologies for using this appli-
cation. Especially its implementation of marker-less tracking is the key feature for adding
virtual objects which happens to be the key feature of this application. Also, Wikitude’s
implementation of moving and scaling provided an idea on how these technologies could be
implemented into the application.

SLAM The SLAM-algorithm is implementing the functionality for marker-less tracking. It
basically scans the environment for unique points, also called features or landmarks. They
are saved by the algorithm to create a map of the environment. With this map, the algorithm
then calculates where its source (mainly a camera) is currently positioned. Enlarging the map
and calculating the map for the environment happens simultaneously which concludes in its
name “Simultaneous Localization And Mapping”.

Wikitude now searches for landmarks that are on the same level. With that points, the
algorithm creates a plane onwhich virtual elements can be placed (e.g. the grid being visible in
Figure 5.18 and Figure 5.19). This reduces the three-dimensional space (withXYZ-coordinates)
from a real-world-environment to a two-dimensional space (with XY-coordinates). The object
can only be moved on this two-dimensional plane thus there is no confusion with moving an
object up or down on the Z-axis.

Of course, the efficiency of these algorithms is depending on the environment. A very
feature-rich environment (means that it has a lot of unique points) helps to find a plane far
more easily since its calculation is easier with more feature points. This also leads to a more
stable plane.

Move, Scale and Rotate Objects Moving, scaling and rotating an object uses Unity’s ray-
casts (Figure 5.21) to interact with the virtual objects.

Figure 5.21: Functionality of a raycast [104]

66 / 244 Fuchs

VIPER Chapter 5. Augmented Reality

When one finger is placed on the screen, the algorithm responsible for the moving an
object is called. It casts a ray at the environment and, when hitting an object, saves the hit
object as an attribute. When moving the finger around, new rays get cast to whose position
the object gets translated to (Listing 5.5).

1 var position = cameraRay.GetPoint(enter);
2 position.y = 0.0f; // the height [here stated as y-axis] -> on

plane
3 _active.position = Vector3.Lerp(_active.position , position ,

0.25f);

Listing 5.5: Translate an object from one position to another given by the movement of the user

Scaling an object needs two fingers placed on the screen. One finger needs to be placed
on the object itself, the other one next to it, creating two points on the screen. The algorithm
now calculates the distance of these two points and scales the object relative to the change of
distance. Less distance means the object scales down (zooming out), more distance means
the object gets scaled up (zooming in) as visualized in Figure 5.22.

Rotating works very similar to scaling since the user needs to put two fingers on the screen,
the first one positioned on the object and the second one next to it. When initially touching
the screen with two fingers, the application saves the distance between those fingers as a
line. Now, every frame, a new line between those fingers is formed leaving an angle between
those lines. With this angle, the rotation of the virtual element gets updated (Figure 5.23 and
Figure 5.24).

Figure 5.22: Scaling the application

Fuchs 67 / 244

Chapter 5. Augmented Reality VIPER

Figure 5.23: Initial position
of the object before the ro-
tation happens

Figure 5.24: Rotation of the
object after performing a ro-
tation on the screen (with
the angle made visible)

Click on Objects Like scaling, moving and rotating, clicking on an object is supported
through Unity’s raycasts (Figure 5.21). When initially touching the screen and hitting an
object, the finger’s touch position is saved. While the user touches the screen the current
position of the finger gets calculated and subtracted from the saved (first) one. If there is a
difference, meaning that the user did move his finger, the action is not counted as a click.
Otherwise, the action is detected as a click on the hit object.

This functionality is implemented in the ClickController.cs with the variable bool moved;
that gets set to true when the user moved his finger during a click (Listing 5.6). When the
user releases his finger and it has not been moved throughout the process the method
void ObjectClick(Transform clickedObject) handles the event. In this case, it adds the
clicked object to the active items and adds a shader to it as well as enabling the button for
purchasing objects.

1 if (! _moved) { // only execute if finger not yet moved
2 Vector2 movedBy = touch.position - _startTouchPosition;
3 _moved = (movedBy.x != 0 && movedBy.y != 0);
4 }

Listing 5.6: Check if the user moved his finger while touching the screen

Delete Items Deleting items is one of the most important things for UX as having to delete
all items when an unwanted item was added might cause a lot of frustration. Thus a very
simple method of removing items was implemented. When an item is selected, a trash can-
icon appears on the screen. When the user hovers it, the currently selected item gets deleted
(Figure 5.25 and Figure 5.26).

68 / 244 Fuchs

VIPER Chapter 5. Augmented Reality

Figure 5.25: Selecting the ob-
ject and seeing the trash can

Figure 5.26: Dragging the
object to the trash can and
deleting it

This functionality takes place whenever the user puts his finger off the screen, meaning
when theMoveController.cs stops casting rays. Then the application checks whether or not
the Vector2 _lastPosition was on the trash can (via bool isOnTrashCan(Vector2 pos))
and depending on that deletes the selected object. In either case the last position gets reset
after calling the function (_lastPosition = new Vector2(-1, -1);) so that the user can
not trigger the process unintentionally.

Display and Purchase Single Items Displaying single items was introduced to add a func-
tionality similar to Snapchat’s AR-implementation where only one object at a time can be
displayed (Figure 5.5). Via the settings page (Figure 5.17) this option can be en- and dis-
abled. When starting the application, the user now has to click on the indicators rather than
dragging them around (Figure 5.27). Clicking on one button then calls void PlaceToCenter(
int modelIndex) (Listing 5.7).

1 int x = count; // Set x to a counter
2 // and add the listener as well as disabling the EventListener
3 b.onClick.AddListener (() => PlaceToCenter(x));
4 b.GetComponent <EventTrigger >().enabled = Settings.

PurchaseMultipleItems;

Listing 5.7: Remove the possibility to drag and add the click-listener

For this method to work, all objects need to be removed before. This happens in
PlaceToCenter(int modelIndex) where all active elements get removed (Listing 5.8). Then
a new object with model corresponding to the index given as a parameter is created.

Fuchs 69 / 244

Chapter 5. Augmented Reality VIPER

Figure 5.27: Comparison between dragging an element in and placing it into the centre via clicking

1 foreach (GameObject go in _activeModels)
2 Destroy(go);
3 _activeModels.Clear ()

Listing 5.8: Remove all objects from the screen

Tutorial The tutorial is displayed when the user starts the application for the first time. It
describes what the user needs to do in order to use VIPER:

70 / 244 Fuchs

VIPER Chapter 5. Augmented Reality

Figure 5.28: The tutorial for the first application which consists of five different pages

In the settings, the user can select whether or not he wants to display the tutorial again
the next time he starts the application.

Reset the Grid Resetting the grid was a very important use-case for simple restarting
especially when a scene gets lost. Without this functionality, the user would have to go back
to the start menu and reload the application. This was implemented through the function
void OnResetButtonClicked(), which resets all the current values as seen in Listing 5.9.

1 _itemController.Actives.Clear();
2 _clickController.PurchaseButton.SetActive(false);
3 // This line is very important since it resets the grid
4 Tracker.SetState(InstantTrackingState.Initializing);

Listing 5.9: Reset the grid and go back to tracking-state

5.4.4 Demo Application for Purchasing Real Items via a QR-code

The second application demonstrates how to purchase real items via QR-code and/or markers.
A plug-in called ZXing was used that allows scanning the environment for QR-codes. When
finding a code it needs to match the conditions for VIPER to be recognized as valid. Thus
it needs three keys and corresponding values: description which is a string, price (in cents),
which has to be a non-digit value, and amount, which is an integer.

Fuchs 71 / 244

Chapter 5. Augmented Reality VIPER

Figure 5.29: Example for a QR-code which works with VIPER’s QR-demo

Figure 5.29 shows an example of a QR-code for VIPER. When scanning this code the result
will be {"description": "ABC", "price": 23, "amount": 1}, so one item called “ABC” is
bought for 0.23 currencies (which is Euro by default but can also be for example US-Dollars).

The scanning result gets handled in the file PluginController.cs in the method
void Update(). When a result is found, the method void MakePayment(string data) gets
called which checks whether the result was valid (Listing 5.10). Scanning a QR-code also
automatically triggers the payment process (section 1.4.7 Payment process).

1 try { // create an Order -object from the data
2 order = JsonUtility.FromJson <Order >(data);
3 itemController.PurchaseItems(new Order[] { order });
4 } catch (ArgumentException)
5 // if data is not an Order -object => exception
6 { Settings.ShowMessage("Not a VIPER -Code"); }

Listing 5.10: Check the data (saved as a string) in the recognized QR-code whether it is correct

5.4.5 Messaging

The demoapplication needs to send somemessages to the user. Thesemessages contain useful
information about confirmations or errors. Since there is no useful implementation in Unity,
a messaging system based on Android’s Toasts (messages) was added. The corresponding file
for this feature is ToastMessage.cs as it enables the possibility of displaying a message with
its internal method IEnumerator ShowMessage(string text, float time = 2.5f). The
return-type IEnumerator specifies that the method gets called in a Coroutinemeaning that it
runs on another thread. This allows pausing that thread for a time while the application in
the main thread still works normally.

72 / 244 Fuchs

VIPER Chapter 5. Augmented Reality

Figure 5.30: Example for the Toast message which states that the user “user1” logged in successfully

5.4.6 Payment Process

The purpose of this application is to enable the user to purchase items. Thus this process had
to be made as easy and self-explaining as possible. It mainly consists of three steps:

1. display the selected elements and prices

2. let the user choose the payment account

3. verify the payment account with a code (either pin or pattern)

Display Selection
Displaying the selection especially is important for legal rights as the user needs to knowwhat
exactly he purchases andhowmuch the price is (both individually and the total costs). A simple
window showing every information the user needs to know was implemented. Figure 5.31
shows an example of this screen. Because a verification from the user is mandatory, the user
must actively press a button to confirm the selection.

Figure 5.31: Example of the display that shows the different selections

Choose Payment Account
The user has to choose the payment account with which he wants to complete the transaction
(Figure 5.32). This is allowed by a window which shows him his saved accounts. When one
account is selected and confirmed it is stored as an attribute so it can get used in the payment
process.

Fuchs 73 / 244

Chapter 5. Augmented Reality VIPER

Figure 5.32: Example of selecting a payment account via the AR-demonstration. The first account is
selected automatically

Verify Password
Of course when trying to purchase an item the user needs to verify his identity especially
when an auto-login is enabled (e.g. via Android’s Account-Manager) as shown in Figure 5.33
and Figure 5.34. Thus there is another security level in the application namely a pin or pattern
which is set on the website. This verification code can be set individually for every payment
account.

The next step is to check if the given verification code was correct. If so, the transaction
will be made, if not, the process aborts. The application notifies the user with a message
about success or fail of the transaction. He will also be messaged when the transaction fails or
the password was wrong. This is implemented via a status code that the service sends when
finishing the transaction.

Figure 5.33: Verification screen
with a pin as the verification
method

Figure 5.34: Verification screen
with a pattern as the verification
method

74 / 244 Fuchs

VIPER Chapter 5. Augmented Reality

Client Library (CL)
All of the communication with the service is handled through the client library. To be fully
functioning, the CL needs to be implemented via five steps:

1. Copy the CL to the project
To realise the possibility of communicating with the service the CL needs to be im-
plemented. Thus the library-files (VIPER_client.dll for Windows and MacOS and lib-
VIPER_client.so for Android and Linux) are added to the “Plugins”-folder in the assets.
The initialization is done automatically by Unity.

2. Login to the account
Since the UX needs to be as fluid as possible the login is done at the very beginning
(Figure 5.14). The CL’s login-method bool login_sync(string api_key, string
identification, string password) is called (the API-key can be seen in StartMenu.cs
under the attribute private readonly string api_key).

The parameters identification and password are filled with the credentials “user1” (user-
name) and “1234” (password) to provide the possibility of skipping the login when
clicking the Skip login and try demo-version-button (see the login-section). When log-
ging in on Android an Android Account gets added automatically.

3. Select the payment account
The next step is to get all payment accounts to give the user the possibility to select
one. Since the CL stores the login-credentials (more specifically explained in sec-
tion 6.13) there is no need in providing them when getting the payment accounts
or making the payment. When calling the function void get_payment_accounts(
GetPaymentAccountsCallbackDel callback) the data gets returned to a callback (void
GetPaymentAccountsCallback(string paymentAccounts, int size)) via which all
the payment accounts are displayed (as seen in Figure 5.32).

4. Make the payment
At last, the user needs to verify his claimed identity and make the payment. This
happens via the CL’s method (Listing 5.11).

1 void make_payment(Order[] orders , int orders_length ,
string currency , string additional_info , string
payment_account , string authentication ,
MakePaymentCallbackDel callback);

Listing 5.11: The payment method with its parameters

This method consists of the items to buy (and the amount of items), the currency for
the transaction, some additional info that will be displayed at the payment’s receiver,
the used payment account (as selected in Figure 5.32), the password the user set for
this specific account and the callback-method which handles the response.

5. Handle the response
As stated in 4., the response is handled in a callback-method (Listing 5.12).

Fuchs 75 / 244

Chapter 5. Augmented Reality VIPER

1 public static void MakePaymentCallback(bool success) {
2 string message;
3 if (success) message = "Finished the transaction";
4 else message = "Could not finish the transaction";
5 PurchaseItemController.PaymentMessage = message;
6 }

Listing 5.12: Callback method after finishing the payment process

The callback has a success-value as a parameter which is set corresponding to the
status of the payment. If it succeeds, the user will see a success-message on his screen,
otherwise the message will be an error.

5.5 Testing

To make the system as stable as possible, it was very important to test the application on a
regular basis. Testing an AR-system can basically be divided into manual testing and running
automated system tests. Since those automated tests will be performed with fewer errors
the biggest problem of AR is that it can not be tested fully automatically yet. Additionally,
some functionalities were only implemented for mobile devices. Since such a device can not
be simulated, its functions had to be tested manually. Both manual testing and automated
testing had to be mixed to fully test the application.

AR can be used in any environment but it first needs to get initialized and find a plane it
can put the virtual elements on. Since this cannot be automated with a simple algorithm, the
automated tests will only include functional testing like executing methods and checking
the results. Thus only unit testing and no end-to-end-testing are included in the automated
tests.

5.5.1 Manual Testing

To make manual testing as widely accepted and reduce the number of errors (e.g. forgetting
to test a feature) as much as possible, a testing protocol was introduced (Table 5.2) which
defines the targeted output. Thus the actual and defined output can be compared very easily.

Input Expected Output Actual Output

1 Start the applica-
tion

See the login screen Login screen visible Y

2 Click the "Skip lo-
gin and try demo-
version"-button

Start menu + welcome
message

Start menu seen and short infor-
mation about active user

Y

3 Click "logout"-
button

Return to login screen Login screen visible Y

Table 5.2: Manual testing protocol - a full version of the protocol can be seen in the appendix (Table 9.1)

76 / 244 Fuchs

VIPER Chapter 5. Augmented Reality

* Insert multiple objects before input
** Insert object and click on it before input
*** Repeat steps 19-21 before input
**** Also do steps 19-22 + 23 afterwards
“Y” ... test succeeds
“N” ... test fails

5.5.2 Automated Testing

For automated testing, there are two technologies that need to be considered: Microsoft’s VS
and Unity’s Test Runner, which is based on theNUnit-framework[165]. Automated testing was
implemented with Unity’s built-in test runner.[165] This allows to simply test all the functions
defined in the different files without much more work to do. Also, Unity implemented the
possibility to test one code on multiple platforms like Android or iOS and helps to standardize
the automated tests even more.

A test generally looks like this:

1 [Test]
2 public void TestMakePaymentCallbackSetsMessageCorrectly () {
3 Payment.MakePaymentCallback(true);
4 Assert.AreEqual("Successfully finished the transaction",
5 PurchaseItemController.PaymentMessage);
6 Payment.MakePaymentCallback(false);
7 Assert.AreEqual("Error! Could not finish transaction",
8 PurchaseItemController.PaymentMessage);
9 }

Listing 5.13: Example of a test in Unity’s Test Runner

Tests are labelled with the NUnit.Framework.Test-class and executed in alphabetic or-
der. Assertions are taken via NUnit’s NUnit.Framework.Assert-class which consists of static
methods including checks like equality or whether an element is set to true or false.

Also, NUnit includes the classes NUnit.Framework.OneTimeSetUp and NUnit.Framework.
SetUp which are called before all tests and before each test respectively. Thus setting up the
testing environment with setting default values can be done like this:

1 [OneTimeSetUp]
2 public void SetUp () {
3 // Setup code
4 }

Listing 5.14: Example of a setup-method which is called at the very beginning

Fuchs 77 / 244

VIPER Chapter 6. Back End and System Design

Chapter 6

Back End and System Design

This chapter elaborates the back end design and shows how the VIPER service was imple-
mented. Choices, concerns and implementations for integration, deployment and payment
related services are explained.

6.1 System Architecture

6.1.1 Architecture Patterns

In this section different architecture patterns are compared and the differences elaborated.

6.1.1.1 Monolithic Architecture

“A monolithic architecture is one in which a software application is designed to work as a
single, self-contained unit. Applications that have this type of architecture are common.
The components within a monolithic architecture are interconnected and interdependent,
resulting in tightly coupled code.” [74]

An example of a monolithic application can be seen in Figure 6.1. The application con-
sists of a data access layer, which communicates with the different databases and is used by
other parts to save, edit, read or delete data. The business logic is implemented in multiple
service modules. On top of these services, a interface layer offers a website for different
device to interact with the application. The monolithic design is software-wise very similar to
the standalone solution presented in the previous section and thus the reuse of the existing
design is possible. Since the parts in monolithic applications are interconnected, the software
can be designed in a way that most effectively ties the application together, resulting in
a performance increase, as mentioned by Ingeno [74]. Furthermore, deployment is easy
and only a single application needs to be deployed and managed. Horizontal scaling can be
achieved by deploying copies of the application and using a load balancing proxy to ensure
high availability.

On the other hand, monolithic architectures are difficult to maintain when building large
applications as Ingeno already noted in his book [74]. Since the code is tightly coupled
and interconnected, changing it may result in unforeseen behaviour in other parts of the
software. This makes tracing and fixing bugs difficult and disencourages making changes

Ebenstein 79 / 244

Chapter 6. Back End and System Design VIPER

or updating the software to include new features. Also resources may be used ineffectively,
for the different components cannot be differentiated and thus the whole application needs
to be handled as a whole. Whereas this may be advantageous for deployment management
purposes, but when it comes to testing an application or CI this means all tests and steps
have to be executed and not only those that have changed.

Figure 6.1: Example of a monolithic application [42].

Furthermore, it is difficult to use different technologies or change them later on because
of the tight coupling. In addition, the large size of the codebase increases the difficulty to
understand the software, which is especially disadvantageous for collaboration and new team
members who need to learn about the existing code. The workflow may suffer from the code-
base size, which requires the development environment to load many, mostly unnecessary,
components and thus slows down the performance of the system and the developer. Also
splitting up task and focusing only on certain aspects is difficult, since team members have to
know how the other interconnected parts work. This requires large teams and management
to ensure everyone has all the necessary informations, which also need to be documented
extensively.

80 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

6.1.1.2 Microservice Architecture

Figure 6.2: Example of a mirco-service architecture [97].

The microservice architecture is a strong contrast to the monolithic approach and consists of
“small, autonomous services that work together” [111]. A service in this context is a piece
of software that implements some logic and offers an interface accessible to other services.
The microservice system show in Figure 6.2 consist of 5 services: A gateway that routes ReST
request from outside the system to the responsible services inside, a WebApp service which
offers a website to interact with the system and a account,inventory and shipping service
which handle account information, inventory details and shipping data respectively and store
it in appropriate databases. In his book about microservices architecture, Newman lists the
following principles for microservices [111]:

Small, and Focused on Doing One Thing Well
This principle is a direct response to the size and complexity problems of monolithic applica-
tions. Microservices group together business logic into a coherent piece of software that is
responsible for all matters inside this domain. This yields the advantage that bugs can be
easily traced back to one specific service and can be fixed there. A service should be small,
but not too small. To choose the right size for a service is one of the great design challenges
associated with this architecture. There are many approaches to this problem; Newman
argues, that most developers can tell when an application is too big and thus should reduce
the size of the service until he does not consider it too big anymore. Another rule-of-thumb is
to target a two week development time for a service and align the size to this time constraint.

Ebenstein 81 / 244

Chapter 6. Back End and System Design VIPER

Autonomous
A microservice should work independent from all other services. It should be deployed as a
single application and may even run on its own OS or server. The communication between
services is implemented via network calls to avoid tight coupling and increase the versatility
of the architecture. Any changes to a service should be independent of any other service.
This autonomy is a great advantage for development purposes, since the services can be
developed in complete isolation and thus split up between programming teams. This re-
duces the required size of a team and thus the organizational problems associated with large
teams. This also means that the services can be scaled as needed and only required parts
may be deployed multiple times. Different technologies can also be used easily, since the
only requirement for a service is a network interface, which is available in most technology
stacks or a wrapper can be build in another technology. This furthers the ability to use the
right tools for a specific tasks and most efficiently and effectively solve a problem. Also
new technologies can be adopted quickly, which is more secure and enables the system to
be up-to-date with current developments. This principle also makes the system resilient
to failures, since all services have to work independently and thus will not fail all at once
like a monolithic system would. Teams can also work without any knowledge about how the
other serviceswork, all the teamneed to know is theAPI definition of each service they require.

The single dependency on the ReST API is a big challenge, since once the definition of
the API is used, it is very hard to make changes to it. Many other services depend on the defi-
nition and changing it requires other services to adopt it, which contradicts the autonomous
principle. A solution for this problem is to version the API and only make other services adapt
the new definition when needed, without interrupting the existing system. The versioning of
an API is an overhead for the architecture, since the versions either have to run simultaneous
in a service, which contradicts the first principle, or have to be deployed onmultiple instances,
which increases the management and routing complexity and cost of the system.

6.1.2 System Design

6.1.2.1 Requirements

The ultimate goal of this project is to enable payment inside XR applications. For the reasons
stated in chapter 2 it was decided to use a cloud-based architecture. The cloud service needs
to be available at all times for transactions to be executable and thus requires high-availability.
To cover all possible devices and applications, the service has to offer a common and widely
used interface format. Since this project is planned to continue in the future to include more
payment options and possibly Business Intelligence (BI) interfaces among other ideas, an
extension and change friendly design is desired.

6.1.2.2 Design Overview

It was decided to use a microservice architecture, because of its flexibility and extension
friendly design. Furthermore the cloud-service can be easily split up into multiple, indepen-
dent microservice.

82 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

Figure 6.3: Overview of the Viper microservices.

Figure 6.3 shows the microservice design of VIPER, which consists of multiple services
and a gateway. The blue-coloured services are called infrastructure services and provide basic
functionality required by all other services. The most important service of this kind is the
registry service (called Eureka in the diagram). Every service registers its name and ip address
there and can query all other services registered. The config service is used to distribute
configuration files for each service, without having to update them manually. More details
about these service can be found in subsection 6.6.2 and subsection 6.6.1 respectively.

The red-coloured services are called Edge services and act as a gateway for all other ser-
vices. The Gateway service receives all incoming requests and forwards them accordingly.
The Authentication service is used for all authentication and security purposes. More details
can be found in subsection 6.5.2 and subsection 6.5.3 respectively.

Orange-coloured services are called composed services, since they do implement little func-
tionality andmostly forward request. The act as a layer of abstraction for other micro-services.
The API service is responsible for forwarding all API related request sent by an application.
The payment-broker service handles all payment related request. Details can be found in
subsection 6.5.6 and subsection 6.7.6.

The green-coloured services are arguably the most important services, since they imple-
ment the actual business logic and are called core services. The organization and customer
service are responsible for mainly website request and handle all organization and customer
related data. The braintree service is a service used to execute transaction and store payment
accounts. For details see subsection 6.8.3, subsection 6.8.2 and subsection 6.7.7 respectively.

Ebenstein 83 / 244

Chapter 6. Back End and System Design VIPER

6.2 Implementation Technologies and Frameworks

6.2.1 Java and Spring

Using Java The microservice based back end infrastructure requires the use of a technology
that is capable of creating microservice, in other words small web-servers. Because all team
members are familiar with the programming language Java, which offers huge support for
enterprise cloud services, it was decided to use a Java-based technology for implementation.
This eliminates the time required for learning a new language and gaining experience with it.

Using Spring There are two major enterprise cloud platforms for Java, namely Java Enter-
prise Edition (JEE) and the Spring Framework. Again, most team members had experience
working the Spring Framework and thus it is preferred. The Spring Framework supports many
useful components for building microservice systems and was therefor chosen for the VIPER
back end.

84 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

6.2.2 Spring Cloud and Netflix OSS

6.2.2.1 Introduction

“Spring Cloud provides tools for developers to quickly build some of the common patterns in
distributed systems [...]. Coordination of distributed systems leads to boiler plate patterns, and
using Spring Cloud developers can quickly stand up services and applications that implement
those patterns. [147]”

As Java and Spring were chosen for the VIPER back end, Spring Cloud, which has a lot
of components helping with the development of microservice architectures, was used for
many parts of the system. Many Spring Cloud components are either Netflix Open Source
Software (NetflixOSS) components orwere built based upon them. Themedia-service provider
Netflix was one of the first companies to build large-scale microservice infrastructures and
has therefore created many tools for doing so. These tools are published as Netflix OSS
and provide different services and communication frameworks. In the following sections
all Spring Cloud and Netflix OSS components used in the VIPER microservice system are
described in more detail.

6.2.2.2 Usage of Deprecated Spring Cloud Components

Some of the components used in this project are already deprecated because a new version of
Spring Cloud was released during the project time. When the planing phase of the project
started, Spring Cloud Finchley.SR1 was the current Spring Cloud version. Relatively early in
the project a new version with minor changes - Spring Cloud Finchley.SR2 - was released. As
there were no breaking changes for the already developed services everything was update
to use the new version. At the end of the project another new version of Spring Cloud -
Greenwich.RELEASE - was released, which introduced some major changes. The release
notes included a section about multiple Netflix OSS components used in this project entering
maintenance mode [61]. This section also included suggested replacement for these depre-
cated components. The two main components entering maintenance mode where Ribbon
and Zuul, with Spring Cloud Load Balancer and Spring Cloud Gateway being the suggested
replacements. Especially the switch from Zuul to Spring Cloud Gateway would have brought
some significant improvements for the back end system. With the biggest change being
that Spring Cloud Gateway uses non-blocking APIs and supports long lived connections like
Websockets [144]. The reason these new components were not integrated into the project
is the late release date, as Spring Cloud Greenwich.RELEASE was released just a few weeks
before the end of the project.

6.2.2.3 Spring Cloud and Netflix OSS Components Used in the Project

Config Spring Cloud Config includes configuration service and client components. The
configuration service can read configuration files from a centralized location and distribute
them to all clients. [148] These clients are all other services in the microservice system. This
allows for dynamic changes to the configuration properties of all services at runtime and
eliminates redundant configurations. The configuration for a Eureka instance, for example,
has to be created only once and can then be distributed to all service.

Strasser 85 / 244

Chapter 6. Back End and System Design VIPER

Eureka Spring Cloud Netflix Eureka is a service discovery framework with two main com-
ponents: Eureka Server and Eureka Client. The Eureka Server allows clients to register and
periodically broadcasts a list to all registered clients, containing all other clients [137]. This
allows the clients to make request to other services without having to know their IP addresses.
This is very important as the IP address can change when a service is redeployed. The Eureka
Client component is used by every microservice (except the config service) and registers to
the Eureka Server on startup, allowing all services to discover each other and work together
[136].

Zuul Spring Cloud Netflix Zuul is the API gateway and router of the microservice system. It
is the only part of the system that is exposed to the outside world over the Internet. Zuul gets
Hypertext Transfer Protocol (HTTP) requests and forwards them to the appropriate service
according to its configuration. The use of Eureka allows Zuul to discovery these services
automatically. In addition to the routing capabilities, Zuul allows for the creation of filters,
which modify or block in- and outgoing traffic. [131] In the VIPER microservice system this is
used for authentication.

Ribbon Spring Cloud Netflix Ribbon is a client-side load balancer. It is used for requests
between services and decides which service a request should go to if multiple instances of a
service are available. To get a list of all available services Ribbon uses Eureka. Apart from
using Eureka’s list of all service, ribbon periodically checks the availability of other services
and changes requests to these services according to the configured strategy. [29] In this
project Ribbon is never used directly, but rather just as a result of using Feign.

Feign Spring Cloud OpenFeign, which will be referred to as just Feign throughout this
work, is the HTTP client used for requests between services. Feign uses Ribbon to decide on
the target of a request. [38] Its main strength is the convenience and simplicity of making
HTTP requests, as only a few annotations are need to set this up. Additionally, all objects are
serialized and deserialized to and from JavaScript Object Notation (JSON) automatically.

86 / 244 Strasser

VIPER Chapter 6. Back End and System Design

6.3 Data Persistence

6.3.1 Introduction

With the use of a microservice architecture data has to be stored distributed to multiple
services. When choosing one or multiple database management systems (DBMSes) for the
system, many aspects such as read and write performance, resilience and security have to be
considered. Themicroservice architecture allows for the use of different solutions for different
services. This enables every service to use a DBMS and underlying database architecture
optimized for its specific needs. The initial plan was to develop database solutions custom to
each microservice. But when comparing the possible options it became clear that the benefits
of such an approach would be negligible compared to the increase in complexity of the entire
system. Thus, it was decided to develop a single database solution that could be replicated
and used in any service (see subsection 6.3.3).

The following section lists all microservices that need to persist data and the properties
of this data.

Authentication Service

Stored Data

• All information that is necessary for customers and developers to authenticate and log
in

• API authentication information of all registered applications

Read/Write Since log-in and payments occur much more often than changes to the au-
thentication information or the creation of new users, the database load of the authentication
service will mainly consist of read operations. Furthermore, many of the write operations are
not time critical and can be executed asynchronously by the underlying service.

Braintree Service

Stored Data

• The Braintree API access information of the Braintree account on which an organization
receives payments

• Payment account information of customers that are registered at Braintree

Read/Write Read operations will occur with every executed payment. Write operations
only occur when the payment information of an organization or customer is changed. Write
operations are again not time critical.

Strasser 87 / 244

Chapter 6. Back End and System Design VIPER

Customer Service

Stored Data

• All personal customer data

• Available payment methods of customers and their authentication method

Read/Write Personal information and the payment methods are not changed frequently.
The main operations are reads when requesting customer information or payment methods.
Write operations are not time critical.

Developer Service

Stored Data

• All information of an organization

• Personal information of developers

Read/Write As with the other services described above, the load consist mainly of read
operations. These occur when requesting organization, application and developer informa-
tion. Writes only occur when organizations, applications or developers are created or edited.
Compared to the other services the total database load of the developer service is low because
it is not involved in the execution of payments.

Payment Broker Service

Stored Data

• History of all successfully executed transactions

Read/Write Themajority of operations are writes because for every successfully executed
transaction all information that defines the transaction is stored in the database. Read
operations only occur when a user requests their the transaction history.

6.3.2 Database Architecture

For the implemented microservice architecture several database architectures are possible.

One Single Central Database The use of one single database (as shown in Figure 6.4)
which holds all of the data needed in the back end system is the simplest approach. All
microservices would have access to all data stored in a single database. This approach cuts
down on the work needed to secure the data as there is only a single place in which it has
to be secured but this also leads to some inflexibilities. If there is even a single piece of
information that needs to be stored in an encrypted database, depending on the DBMS used,
all data might have to be encrypted. This could of course lead to decreases in performance.
Another such limitation becomes clear when thinking about the actual data stored in the

88 / 244 Strasser

VIPER Chapter 6. Back End and System Design

database. Some of the data might be best represented in a graph database, some of it might
be too unstructured to be stored in an relational database. There can be a lot of variety in the
data and the use of a single database would make it impossible to optimize the way data is
stored. In the current state of the project, in which the system is just a prototype and the
functionality is relatively limited, this might not be a problem, but thinking into the future a
single database is definitely too limiting for the system. Thus, even if this solution would be
easy and fast to implement, it is not the right choice. Additionally, it would violate one of the
basic ideas of a microservice architecture - the complete separation and loose coupling of
individual services. With a single database a change to one service could lead to changes in
the database and if all services use the same database, some or even all of them would have
to be changed.

Figure 6.4: One single database that is used and shared by all microservices

One Single Central Persistence Service Instead of having a central database that is di-
rectly accessed by all microservices, this database could be wrapped in a microservice of its
own (as shown in Figure 6.5). This would eliminate some of the problems of a single database
whilst still being fairly simple to implement. Having an additional layer of abstraction for
accessing the database makes it easier to perform changes to the database without the need
to also change all microservices. This would also bring back some loose coupling and encap-
sulation of similar behavior that is important in microservice systems. But ultimately this
approach still does not change the fact that the data might be too diverse to be efficiently
stored within the same DBMS.

Strasser 89 / 244

Chapter 6. Back End and System Design VIPER

Figure 6.5: one single persistence service that is used and shared by all microservices

One Database per Service When looking at the basic principles of microservices the ap-
proach shown in Figure 6.6 is very sensible, which is the reason it was chosen for the VIPER
back end. Every microservice has its own database, which can only be accessed by this service.
This gives a lot of freedom in development. Different microservices can use different DBMSes
depending on the data they stored. Every service has by design only access to the data it should
have access to without the need of any sort of access control. This approach makes it very
easy to make changes to the database, as there is only one service accessing it. Depending on
how this architecture is implemented it can also lead to significant improvements of security.
With the approach that was chosen, every service that needs a database has an entry for it in
the docker-compose file. With this configuration the database is deployed automatically on
the same machine as the microservice. This eliminates the risk of exposing data when it is
sent between the service and the database as everything happens on the same machine.

Figure 6.6: every service has its own individual database which can only be accessed by this service

But having all the data distributed over multiple services also comes with some downsides.
For many requests, the service that gets the request needs some piece of information from
another service. In many cases this is not a problem, as that is what microservices are made

90 / 244 Strasser

VIPER Chapter 6. Back End and System Design

for. Every service only does what it is meant to do and delegates everything else to other
services. But sometimes it is just a lot faster to have duplicates of data stored at different
services, to lower the number of calls needed deal with a request. This ensures compliance
with the principle that microservices should not be chatty if it can be avoided [111, p. 65]. One
such example of data being duplicated was much of the data that was originally just meant
to be stored in the authentication service. Data like the email addresses and usernames of
users is authentication information, which is the reason it was initially just stored within the
authentication service. But moving forward it became clear that these pieces of information
were needed for many requests to the customer and developer services and that it was very
inefficient to always request them from the authentication service. Thus, changes were made
to also store information directly at the customer and developer services.

Multiple Databases per Service Expanding on the ideas above, having a single database
per microservice might still be limiting in some ways. The data within a single service might
be too diverse to be stored in the same DBMS in which case it might be beneficial to have
multiple databases for a single microservice. This would also allow for the possibility of
having a cache, which could be realized with a key-value store like Redis, which works in-
memory and is therefore a lot faster, as this paper comparing main-memory and disk-resident
databases shows [2]. Even tough this would be a great addition to the database architecture
the time constraints of the project did not allow for it. But using an in-memory cache should
definitely be considered as a future improvement. Having data that is too diverse to be stored
in the same DBMS was not a problem in this project, but to remain future-proof the solution
that was chosen - having one database per service - can be easily expanded to an architecture
with multiple databases.

6.3.3 Databases Selection

Initially the idea was to use different DBMSes for different services. But as the data of all
services was relatively similar, performance gains would have been hardly noticeable. Thus,
it was decided to use the same DBMS for all services.

SQL or NoSQL As a single DBMS had to be select for all services it was clear that SQL
databases would be too inflexible to store all the different types of data. The characteristics
of NoSQL databases described in this 2012 paper [36] clearly make them better suited for a
microservice architecture than SQL databases. NoSQL databases are more easily scalable,
which is an important aspect and one of the main benefits of microservices. These databases
also fit the style of development better as an agile project management method was used
which requires the ability to be flexible and be able to make changes to the existing system.
NoSQL system are are superior in this aspect because different from SQL database they have
no fixed schema or data format, making changes very easy.

The Type of NoSQL Database As described in this paper [36] there are multiple types
of NoSQL databases - key-value databases, document stores, column databases and graph
databases. For the data stored in the VIPER back end a document store is the most suitable
database type as its data model fits the data that needs to be stored very well. Key-value
databases would be too limited in their capability to store unstructured data and references
between different data points. The use of column databases would be possible but their

Strasser 91 / 244

Chapter 6. Back End and System Design VIPER

data model would not allow for optimization of most of the read operations that would be
performed. A similar problem rules out the use of graph database as the strengths they have
working with data that has many relationships would not be relevant with the data that needs
to be stored, especially since many of the relationships between different data points span
across service boundaries.

Selection of a NoSQL Document Store One important limitation for the selection of a
DBMS was its support by Spring Data as it was important for easy and fast development to
have a solution for the communication with the database that would integrated well with the
rest of the service code. This limited the possibilities to MongoDB, Couchbase and ArangoDB
[149]. Looking at the functionality of MongoDB [102], Couchbase [32] and ArangoDB [14],
there is no clear benefit to any of them for what was needed at the back end, thus letting the
selection of a DBMS come down to previous experience of the team. Therefore MongoDB was
selected as the DBMS of the microservices.

6.3.4 Security

Much of the security the system provides comes as a result of the chosen architecture and
used principles. For example, the database is deployed on the same machine as the microser-
vice that is using it and it does not (and cannot) get requests from anywhere outside the
machine. An Exoscale firewall was used was used for this purpose (for further details see
subsubsection 6.5.7.1)

6.3.4.1 MongoDB Security

The security provided by the underlying architecture should be enough to ensure that all data
is secure during transit between the database and the service. Nevertheless, some additional
measures were taken to make the MongoDB database secure for possible future changes. The
docker-compose configuration shown in Listing 6.1 is used to set the username and password
with which the database can be accesses and passes a custom configuration file in which the
authorization is enabled, so that username and password have to be provided to access the
database (see Listing 6.2).

1 version: '2.4'
2 services:
3 mongo:
4 image: mongo :4.0.3
5 environment:
6 MONGO_INITDB_ROOT_USERNAME: some_user
7 MONGO_INITDB_ROOT_PASSWORD: some_password
8 command:
9 - '-f'
10 - '/etc/mongod.conf '
11 volumes:
12 - '/home/ubuntu/mongod.conf:/etc/mongod.conf '

Listing 6.1: MongoDB docker-compose configuration

92 / 244 Strasser

VIPER Chapter 6. Back End and System Design

1 security:
2 authorization: "enabled"

Listing 6.2: MongoDB configuration to enable authorization

6.3.4.2 Frugal Data Storage

A core principle used in this project to make development easier and the system more secure
was to store as little data as possible. This also limits legal responsibility as the government or
anyone else cannot ask for information that is not stored. For this reason only the information
that is entered by the user and that is absolutely necessary for the system to function and
some historic data of payments but no activity logs or anything that is not actually needed by
the system, is stored.
The most important application of this principle was to not store any information of the pay-
ment accounts, like credit card numbers, which would have had to be secured very thoroughly
and would have been a target for security attacks. Using Braintree (for further details see
subsection 6.7.7) all sensitive information lies at the Braintree servers. Only a reference to
this information is stored and can easily be revoked.

6.3.4.3 Future Security Improvements

As the project had time constraints and the finished product is just a prototype there are still
some security improvements necessary for a production ready system.

Encryption at Rest To ensure that the data is secure even when an attacker gets access
to the file system of the machine the database is running on, all data should be encrypted
within the database. As this is a feature only available in the non-free MongoDB Enterprise
Version [51], setting up such an encryption was not within the scope of this project but is still
important for a production ready system.

Encryption in Transit With the current architecture, where the database and the microser-
vice are on the same machine, encrypting the data in transit is not relevant and would just
be an overhead. But if this changes in the future the communication between the database
and the service needs to be secured. This can be achieved by having an X.509 certificate as
.pem file for the MongoDB database and adding the options in Listing 6.3 to the MongoDB
configuration file.

1 net:
2 ssl:
3 mode: requireSSL
4 PEMKeyFile: /path/to/file.pem

Listing 6.3: MongoDB configuraiton needed to enable SSL for communication

Strasser 93 / 244

Chapter 6. Back End and System Design VIPER

System Activity Audit To track access and changes to the database for detection of an
attack or intrusion the MongoDB auditing system should be used for a production system
[103].

6.3.5 Database Access

6.3.5.1 Library Used for Database Access

As all the microservices are build using Java and Spring, Spring Data is used for the communi-
cation with the service database. For integration with MongoDB Spring Data has the module
Spring Data MongoDB which can be added to a service as a Maven dependency with the code
from Listing 6.4.

1 <dependency >
2 <groupId >org.springframework.boot</groupId >
3 <artifactId >spring -boot -starter -data -mongodb </artifactId >
4 </dependency >

Listing 6.4: Spring Data MongoDB Maven dependency

6.3.5.2 Creating the Documents

The structure of the data as it is stored in the database is defined by the classes whose objects
are used to represent and work with the data within the code of a service. These classes need
to be annotated with@Document.

There are two types of document classes: ones that are actually stored as their own
collection (collections are basically the tables of MongoDB) within the MongoDB database
and ones that are just embedded into other document classes. When deciding which classes
should be collections and which ones should just be embedded, it is important to consider
which read operations will be most commonly performed. If a lot of data is just embedded
within another class all of that data is read and returned to the application with every read
operation. If there is therefore a piece of data that is for example on average only needed in
every tenth read request it would be wise to consider storing it in its own collection and just
referencing it. But there are also performance considerations for references, as Spring Data
MongoDB provides the possibility to load referenced data either lazily or eagerly. Here the
same considerations as mentioned before should be made. If a piece of referenced data is
needed in every or most read requests it should be loaded eagerly but if it is only occasionally
needed it should be loaded lazily. Examples of how to reference other classes and load the
data either eagerly or lazily can be found in Listing 6.5.

1 @DBRef(lazy = true)
2 private Object lazilyLoadedObject;
3

4 @DBRef(lazy = false)
5 private Object eagerlyLoadedObject;

Listing 6.5: Lazy and eager loading of referenced objects

94 / 244 Strasser

VIPER Chapter 6. Back End and System Design

To be able to uniquely identify any object stored in the database every class that is
stored as a database collection should have a unique ID. Spring Data MongoDB has the class
org.bson.types.ObjectId for this purpose. The field in which this ID is stored has to be annotated
with@Id which is just short for using the annotations@NotNull and@Indexed(unique = true)
(see Listing 6.6).

1 @Id
2 private ObjectId _id;

Listing 6.6: MongoDB ObjectId field

Apart from the ID other indexes can be added to a collection with the@Indexed annotation.
To mark an unique field for indexing the annotation@Indexed(unique = true) has to be used
(default is unique = false). To create a compound index with multiple fields for a single index
the annotation@CompoundIndex has to be used. This is a class level annotation. The index is
defined as shown in Listing 6.7. The argument def is set to all the fields that are used within
the index have to be listed in the shown format.

1 @CompoundIndex(name = "index_title", unique = true , def = "{'
field1 ' : 1, 'field2 ': 1}")

2 public class ... {
3 ...

Listing 6.7: Definition of a compound index

All database collections of the individual services were designed using these principles.
A full example of a document class implementing all of this can be found in the appendix
under Listing 9.2

6.3.5.3 Database Repositories

To actually store data in the database and retrieve it again the InterfaceMongoRepository of
Spring Data MongoDB is used [76]. For every document class an interface inheriting from
MongoRepository that is annotated with@Repository has to be created (see Listing 6.8). As
MongoRepository inherits from the InterfaceCrudRepository basic Create, Read, Update, Delete
(CRUD) functionality (save new or updated object, delete object by id, find object by id) is
already provided with an empty interface.

1 @Repository
2 public interface UserRepository extends MongoRepository <User ,

ObjectId > {
3 }

Listing 6.8: Definition of a repository interface

In some cases it was necessary to add additional methods to the interface to provide more
advanced ways of finding or deleting objects. This is achieved by using a special syntax for

Strasser 95 / 244

Chapter 6. Back End and System Design VIPER

method names described in detail here [85] and here [173] [150]. Listing 6.9 shows a few
examples of this method name syntax.

1 Optional <User > findByEmail(String email);
2

3 Optional <User > findByUsername(String username);
4

5 boolean existsByEmail(String email);
6

7 Optional <User > findByEmailOrUsername(String email , String
username);

8

9 void deleteByUsername(String username);

Listing 6.9: Spring Data Repository methods

As return type of the find-methods the class Optional is used since these methods are not
guaranteed to return an object. In case the object is not found an empty Optional is returned.
The class Optional has the method isPresent to check if the Optional contains a value. This
check should be performed before retrieving the actual object from the Optional.

To use these repositories they have to be added as an autowired field to the classes they
are used in (see Listing 6.10)

1 @Autowired
2 private UserRepository userRepositroy;

Listing 6.10: Autowiring repositories

96 / 244 Strasser

VIPER Chapter 6. Back End and System Design

6.4 Service Communication

As the VIPER back end is built using a microservice architecture there are many requests
requiring multiple services to work together to be fulfilled.

6.4.1 Synchronous or Asynchronous Communication

For any request made between services the communication can be either synchronous or
asynchronous. With asynchronous communication a service makes a request to another
service without waiting for a response just assuming that everything went well. In many
cases this approach can be much faster than to wait for a response and therefore improve
the end user experience. [111, p. 89] But it is important to note that whilst synchronous
communication can almost always be used and will just be a little bit slower in some cases,
asynchronous communication cannot. If it is important to know that an action completed
successfully or if the service that makes the request needs some resource from the request
target, synchronous communication has to be used. It will therefore not be possible to use
just asynchronous communication within the microservice system.

Advantages of Asynchronous Communication Good use cases for asynchronous com-
munication are operations in which resources are created changed or deleted but no data or
information about the success of the operation has to be returned. Taking the example of a
new customer account being created, many advantages of an asynchronous communication
model become clear. When a new customer account is created, the initial request is sent to
the Customer Web Service. It could then send out synchronous requests to all other services
that need to know about this new customer and wait for them to send back a success response.
But it could also just send out asynchronous messages without worrying about the success of
other services. This would make the whole process a lot faster and the user experience better.

Event Based Communication A variation to this approach would be to not send the asyn-
chronousmessage directly to the services, but to send out an event stating that a new customer
has been created using a message queue. This would mean that the service getting the initial
request does not need to knowwhich other services have to be informed. Instead every service
just listens for events and decides whether or not it has to do something because of an incom-
ing event. This model of communication is called choreography in contrast orchestration - the
model described before. With choreography the business logic of the microservice system
is more evenly distributed across the services. Additionally, this approach greatly reduces
coupling between services [111, pp. 89–92].

Conclusion Knowing all of that, there is still a good reason the approach of asynchronous
event based communication was not used for the VIPER microservice system. Implementing
such a system is very complex and there are a lot of aspects to be considered. E.g. how is data
kept consistent across service boundaries without getting responses whether or not actions
were successful. Additionally, the performance improvement would not have justified the
effort needed to implement such a system, as most requests are processed very fast within
the services receiving them, making the whole request fast enough even with synchronous
communication. If there had been more time to implement a system with asynchronous

Strasser 97 / 244

Chapter 6. Back End and System Design VIPER

communication it might have been a smart decision to do so but with the time constraints of
the project, using the much simpler synchronous communication was the right way to go.

6.4.2 Communication Technologies

This sections explains the communication technologies used for requests within the microser-
vice system.

6.4.2.1 ReST communication

ReST Having decided on the use of synchronous communication between services, using
ReST over HTTP was the obvious choice as these are the technology Spring and Netflix OSS
use by default. As detailed in subsubsection 6.5.1.1 using a different technology like Simple
Object Access Protocol (SOAP) would not have brought any significant advantages. But would
have integrated worse with the used technology stack as it requires additional configuration
to be used (which ReST does not).

JSON As a data format for the ReST requests it was decided to use JSON since this is the
format that is used by Spring Web and Feign by default. Changing it would not result in any
improvements, as JSON already is one of the simples formats with very little overhead. But it
would have resulted in much higher development efforts, as additional configuration would
have been required. That being said, the data format used in transit does not have any impact
on the actual development as all data is automatically serialized and deserialized by Spring
Web and Feign. Thus, using the default is a sensible approach.

6.4.2.2 Spring ReST Interfaces

The ReST interfaces of the services were implemented using Spring Web and their web-
bind-annotations. Using these annotations allowed for fast and easy development of a big
number of ReST endpoints. The classes containing ReST endpoints have to be annotated
with@RestController and@RequestMapping("..."). The argument of RequestMapping is the
base Uniform Resource Locator (URL) path of every ReST endpoint defined in that class (see
Listing 6.11).

1 @RestController
2 @RequestMapping("payment")
3 public class PaymentController {
4 ...

Listing 6.11: Annotations of a ReST controller

The actual ReST endpoints are methods of a RestController class, which have to be
annotated with the annotations shown in Listing 6.12, containing the URL path of that ReST
endpoint.

98 / 244 Strasser

VIPER Chapter 6. Back End and System Design

1 @GetMapping("path/to/endpoint")
2 public Object getEndpoint (...) { ... }
3

4 @PostMapping("path/to/endpoint")
5 public Object postEndpoint (...) { ... }
6

7 @DeleteMapping("path/to/endpoint")
8 public Object deleteEndpoint (...) { ... }
9

10 @PatchMapping("path/to/endpoint")
11 public Object patchEndpoint (...) { ... }

Listing 6.12: ReST endpoint annotiations

The annotation determines the HTTP method of the endpoint (multiple endpoints can
have the same URL path with different HTTP methods). For more information about HTTP
methods see [72] and [167]. For a formal specification of the HTTPmethods see [58, pp. 21–33]
and [48].

6.4.2.3 ReST Requests With Feign

Adding Feign to a service All request between services were made using Feign which
integrates very well with Eureka (see subsection 6.6.2) eliminating the need to know the ad-
dresses of the targeted services. Feign can be added to a service with the Maven dependency
from Listing 6.13. For Feign to work properly the entry point class of the Spring applica-
tion (which is already annotated with@SpringBootApplication) has to be annotated with
@EnableFeignClients.

1 <dependency >
2 <groupId >org.springframework.cloud </groupId >
3 <artifactId >spring -cloud -starter -openfeign </artifactId >
4 </dependency >

Listing 6.13: Feign Maven dependency

Creating a Feign Client To make a request to another service an interface annotated with
@FeignClient("...") has to be created. The argument of FeignClient is the name (given with
the configuration property spring.application.name) of the service to which the requests is
made. The actual address of the service is found by Feign as it works together with the service
registry Eureka. For every possible request to this service a method needs to be added to
the interface. This method must have the same signature (apart from the method name and
method arguments without annotations) of the ReST endpoint method. An example of a
ReST endpoint and the corresponding Feign client method is shown in Listing 6.14 and a
complete example of a Feign client interface can be found in the appendix under Listing 9.3.

Strasser 99 / 244

Chapter 6. Back End and System Design VIPER

1 //ReST endpoint
2 @PostMapping("user")
3 public Response register(HttpServletResponse response ,

@RequestBody CreateUserRequest request) { ... }
4

5 //Feign client method
6 @PostMapping("user")
7 feign.Response createUser(@RequestBody UserCredentials

credentials);

Listing 6.14: ReST endpoint and the corresponding Feign client mehtod

It is important to note that the classes used as return type and as method arguments have
to be equal in the endpoint method and the Feign client method. Equal in this case means
that they must have the same fields, so that the object mapper can convert an object of that
class to JSON and then back to a Java object in the receiving service. The only exception to
this is the return type of the Feign client methods as this can always be feign.Response. The
feign.Response class contains the returned object alongside some meta data like the HTTP
status code. This functionality was used to communicate error types in some requests.

Using the Feign Client As the Feign client interface is a normal Spring bean, it can be used
by adding an autowired field to the class in which it is needed (see Listing 6.15).

1 @Autowired
2 private FeignClient feignClient;

Listing 6.15: Autowiring a Feign client interface

Problem: PATCHMapping Not Supported by Feign When creating Feign client methods
for PATCH mappings, they will not work and just throw an exception saying Invalid HTTP
method. To solve this, theHTTP client used by Feign has to be changed to one that does support
the PATCH method. For this the Feign Apache HttpClient [56] can be used. It is automatically
used if the Maven dependency is added to the service as shown in Listing 6.16. As both
feign-httpclient and spring-cloud-starter-openfeign have feign-core as a sub-dependency, it is
important to use versions of these Maven dependencies that reference the same version of
feign-core (in the case of this project version 9.7.0).

1 <dependency >
2 <groupId >io.github.openfeign </groupId >
3 <artifactId >feign -httpclient </artifactId >
4 <version >9.7.0 </version >
5 </dependency >

Listing 6.16: Feign Apache HttpClient Maven dependency

100 / 244 Strasser

VIPER Chapter 6. Back End and System Design

6.4.3 Security

Since sensitive data is passed freely between the individual microservices, it is important to
consider the security of this data during transit.

6.4.3.1 Communication Between Exoscale Instances

In the VIPER back end every microservice runs on its own Exoscale instance with all instances
being in the same data center in Vienna. This means that all traffic between the instances
is limited to the data center and is never routed over the Internet. Additional security is
provided by firewalls, allowing only Exoscale instance of other microservices to make HTTP
requests to each other (for more details about Exoscale firewalls see subsubsection 6.5.7.1).
Security could be slightly improved by only allowing communication between instances that
need to communicate with each other. But as the back end system is relatively small and
all microservices in the system trust each other, this is not used. Having this more complex
firewall configuration would also bring back an unwanted element of coupling between the
services, as every service would have to manage from which other services requests are
allowed.

Exoscale provides the functionality of virtual private networks. Using this, all microser-
vices could be inside such a private network, being able to communicate with each other
without being exposed to the Internet. This would improve security of the services and
eliminate the need for a firewall. The reason this feature is not used for the VIPER back end
is the fact that Exoscale released a new feature call managed private networks [77]. Whereas
with standard private networks all management of IP addresses has to be handled by the
user of the network, managed private networks have a Dynamic Host Configuration Protocol
(DHCP) server managed by Exoscale. As this feature is by the time of writing only available in
the Swiss region of Exoscale, it could not be used for this project. Using the standard private
networks instead would have been possible but would not have made much sense. Using
them would have required the development of a custom solution for distributing IP addresses
to the instances, which would be obsolete once managed private networks become available
in the Vienna region. Since this project is just a prototype no time was spend developing
something the will soon be obsolete. Instead it was decided to wait for the new feature to
come to the Vienna region.

6.4.3.2 Communication Over TLS

All communication between the services happens within a single data center and nothing is
routed over the Internet. Encrypting the traffic is therefore not a priority. But as it would
still bring security improvements, it should be implemented in the future. The reasons for
not implementing it are the time constraints of the project. Encryption can be done by
forcing Hypertext Transfer Protocol Secure (HTTPS) on all ReST endpoints. This would be
implemented the sameway as described under subsubsection 6.5.7.2. Even though performing
all communication over Transport Layer Security (TLS) would result in security improvements,
it should be considered that encrypting and decrypting the network traffic is an overhead
that might be unnecessary for some communication paths. If only information that is already
available through a public API is shared in a request, it would be unnecessary to encrypt
this traffic. The communication over TLS should therefore only be implemented where it is
actually needed to improve security.

Strasser 101 / 244

Chapter 6. Back End and System Design VIPER

6.5 External Communication

The microservices do not only need to communicate with each other, but also with third
parties over the Internet. They get requests from users using the website and from customers
using a VR or AR application. These requests from AR or VR applications will in most cases
come from the client library (see section 6.13).

6.5.1 Communication Technologies

Choosing the right technologies is especially important for the external communication, as
these technologies not only decide how the components of the VIPER system communicate
with each other but also how third parties can communicate with the system.

6.5.1.1 Using ReST

The communication with the website and the AR and VR applications happens over a public
API. It was therefore important to implement it, using widely accepted technologies, usable
across a wide variety of systems, platforms, technology stacks and programming languages.
Using ReST over HTTP was therefore the obvious choice, as these are the technologies Spring
Cloud uses by default. HTTP and ReST fulfill all the requirements stated previously. These
technologies are very widely used and accepted, they can be used on almost any platform
and with virtually every programing language. HTTP and ReST are especially easy to use
with web applications clients using JavaScript, as the example from this website show [69].
Development of the system is very simple when HTTP and ReST are used, because every
component (Spring Web, Spring Security, Feign and Zuul) used in the VIPER back end system,
uses these technologies by default. This eliminates the need for any additional configuration
and takes virtually no time to set up.

Of course there are other options for the external communication. One such option, that is
also supported by Spring Cloud, is SOAP. But there are multiple downsides of this technology
compared to ReST. It does not integrate as well with the used technology stack and would lead
to a higher development effort. Additionally, it is not as widely used, especially for lightweight
web applications [41] [143]. This 2013 paper [107] also shows the clear performance benefits of
using ReST instead of SOAP. All of these downside lead to the elimination of SOAP and make
ReST and HTTP the logical choice for the external communication. For more information
about ReST see this paper [59]

6.5.1.2 JSON data format

For the data format used to share information with third parties, the same requires stated in
the previous section hold. It has to be widely accepted, it should be easy to use with a wide
variety of programming languages and it should ideally be human readable (for increased
convenience). Given these requirements, there are two possible data formats: JSON and
eXtensible Markup Language (XML). Both these formats are human readable, widely used
and have libraries for virtually any programing language. Compared to XML JSON has less
overhead, which decreases network load and increases performance. Additionally, JSON is
the data format used by Spring Web by default. It was therefore chosen as the data format for
the external communication. XML would not have provided any advantages over JSON, as
feature like tags and attributes, which are unique to XML would not have been used in the

102 / 244 Strasser

VIPER Chapter 6. Back End and System Design

project. Moreover, using XML would have lead to an additional development effort, as it is
not the Spring Web default.

6.5.2 Zuul API Gateway Service - Routing

The API Gateway Service uses Netflix Zuul for its routing capabilities.

6.5.2.1 Zuul and Eureka

Zuul works together with the Eureka Service (see subsection 6.6.2) to get a list of all available
services and can route incoming traffic according to the routing configuration. When using
Zuul with Eureka, it automatically creates routes to all discovered services based on their
names. A service with the name api would therefore automatically receive all traffic sent
to the gateway with the URL path /api/*. To prevent this automatic creation of routes and
customize the routing behavior, all services for which no automatic routes should be created,
have to be ignored with the configuration shown in Listing 6.17.

1 zuul.ignored -services=api ,authentication ,braintree ,customer ,
developer ,payment -broker

Listing 6.17: Ignore all services to prevent automatic route generation by Zuul

6.5.2.2 Zuul Routing

Having disabled automatic route generation, new routes can be created with the configuration
shown in Listing 6.18. This configuration routes all traffic coming to the gateway via the
URL paths user/*, developer/* and api/* to the appropriate services. With this configuration
the prefix of the URL path is stripped. Thus, a request to gateway/user/pay is forwarded to
customer_service/pay. For the Authentication Service only a single route is exposed to the
outside world - /login - all other traffic is blocked.

1 # Zuul routes
2 # -----------
3

4 # authentication service
5 zuul.routes.authentication.path=/login
6

7 # customer web service
8 zuul.routes.customer.path=/user/**
9

10 # developer web service
11 zuul.routes.developer.path=/ developer /**
12

13 # api service
14 zuul.routes.api.path=/api/**

Listing 6.18: Configuration of Zuul routes

Strasser 103 / 244

Chapter 6. Back End and System Design VIPER

All services without a route configuration cannot be reached over the Internet and can
just communicate with the other services in the microservice system.

6.5.2.3 Disabling Individual Routes

When using the double asterisk (.../**) in route configurations all traffic that matches the
pattern is routed to a service. This might have some unwanted side effects, as all endpoints of
a service would be exposed. Even those that are just meant for inter-service communication.
To disallow traffic to certain endpoints the configuration shown in Listing 6.19 can be used.
The three services using this configuration (Customer Web Service, Developer Web Service
and API Service) do not need this protective measure. All endpoints of these services are in
the public API, as either part of the website back end or part of the VR and AR application
API. If the APIs of these services were to be expanded to include private endpoints in the
future, the configuration from Listing 6.19 could be used to protected them from unwanted
traffic.

1 zuul.ignored -patterns =/user/account/info ,/ developer/org/
payment

Listing 6.19: Example of a configuration to disallow traffic to certain endpoints

6.5.3 Authentication Service

The two main tasks of the Authentication Service are to store user account information and
validate the credentials of a user trying to log in. Additionally, it also stores the API keys of
all registered applications.

6.5.3.1 Authentication Service Database

As described in subsection 6.3.3, the Authentication Service uses MongoDB to store all of
its data. This includes all information necessary to verify login attempts of users and the
API keys of all applications. The Entity Relationship Diagram (ERD) from Figure 6.7 shows
the database design used to store this information. Some of the information stored in the
database, namely the organization ID of developers and applications is redundant, with the
main storage being the Developer Web Service. This information is stored redundantly for
performance reason, as the communication between the Authentication and Developer Web
Service was too chatty without this redundancy.

104 / 244 Strasser

VIPER Chapter 6. Back End and System Design

Figure 6.7: ERD of the Authentication Service database

6.5.3.2 Password Hashing

All user passwords were stored in hashed form using the Scrypt hashing algorithm (for a
detailed explanation of the Scrypt hashing function see [119] and [120]). Scrypt is one of
the four hashing algorithms deemed secure enough for password storage by the Open Web
Application Security Project (OWASP) [84]. The other three being Argon2, PBKDF2 and Bcrypt.
OWASP recommends the use of Argon2 for password hashing, but as the used security library -
Spring Security - does not support this new hashing algorithm, it could not be used. If support
for this algorithm gets added in the future switching to it should be considered to improve
security.

Out of the remaining three choices - PBKDF2, Bcrypt and Scrypt - both PBKDF2 and
Bcrypt are not recommended anymore. [126] The calculation of the PBKDF2 can be optimized
and speed up by omitting parts of the calculation and can potentially be parallelized and
further speed up with the use of Graphics Processing Units (GPUs), as detailed in this 2018
paper [170]. Comparing Bcrypt and Scrypt, the calculation of a Bcrypt hash is less memory
intensive and can therefore be cracked more easily using GPUs [90]. For these reasons Scrypt
was chosen as the password hashing algorithm of the VIPER back end.

Strasser 105 / 244

Chapter 6. Back End and System Design VIPER

6.5.3.3 Authentication Service User registration

When a new user registers at the VIPER system, the request initially goes to either the
customer or the Developer Web Service, depending on the account type. These services then
send all information necessary for user authentication to the Authentication Service, where
it is stored in its database. At the Authentication Service the password is hashed and the user
information is written to the database, as shown in Listing 6.20.

1 User user = new User(newUser.getEmail (), passwordEncoder.
encode(newUser.getPassword ()), newUser.getUsername ());

2 userRepository.save(user);

Listing 6.20: Storing a new user in the database of the Authentication Service

The passwordEncoder object used for password hashing is an instance of Spring Security’s
Scrypt implementation SCryptPasswordEncoder, which hashes the password and automatically
adds a salt for added security (for further information about password salts see [84] and [134]).

After adding the user information to the database, the newly created user is automatically
logged in by returning a JSON Web Token (JWT) in the authorization header, as shown in
Listing 6.21. This process is explained in more detail in subsection 6.5.4.

1 // Create JWT
2 String token = JwtUsernameAndPasswordAuthenticationFilter.

createJwt(user.get_id ().toHexString (), new ArrayList <String
>(){{add("ROLE_USER");}}, jwtConfig.getExpiration (),
jwtConfig.getSecret ());

3 //Add authentication header with the token
4 response.addHeader(jwtConfig.getHeader (), jwtConfig.getPrefix

() + token);

Listing 6.21: Automatically logging in a newly created user by returning a JWT in the authorization
header

6.5.4 Login Handling at the Authentication Service

6.5.4.1 Using Spring Security

For handling user logins Spring Security was used in the Authentication Service. This module
can be added to a service as a Maven dependency with the code from Listing 6.22.

1 <dependency >
2 <groupId >org.springframework.boot</groupId >
3 <artifactId >spring -boot -starter -security </artifactId >
4 </dependency >

Listing 6.22: Spring Security Maven dependency

106 / 244 Strasser

VIPER Chapter 6. Back End and System Design

Spring Security requires a class containing all security configurations. The basic structure
of this class is shown in Listing 6.23. The full security configuration of the Authentication
Service can be found in the appendix under Listing 9.4.

1 @EnableWebSecurity
2 public class SecurityConfig extends

WebSecurityConfigurerAdapter {
3

4 @Override
5 protected void configure(HttpSecurity http) throws Exception

{ ... }
6

7 @Override
8 protected void configure(AuthenticationManagerBuilder auth)

throws Exception { ... }
9 }

Listing 6.23: Basic structure of the Spring Security configuration class

The configuration inside the first configuremethod contains rules for all incoming HTTP
requests. The second configuremethod contains the configuration of the AuthenticationMan-
ager, which performs the authentication of a user. Both these configurations are explained in
more detail under subsubsection 6.5.4.3.

6.5.4.2 Choosing an Authentication Technology

Choosing the right authentication technology for the external communication is of prime
importance, as this can greatly affect the security of the whole system. Spring Security
supports both Sessions and tokens like JWT (see [78] for more details about JWT).

Using Sessions With sessions, all data of logged in users is stored at the Authentication
Service, either in memory or in a database. The logged in user just receives a session ID used
to find the session data. As only a single ID is need to authenticate a user, the network load is
minimal. Having all session data stored at the Authentication Service enables it to invalidate
the session at any time. This improves security, as the user can be securely logged out at
any time, reducing the risk of an third party maliciously using a user’s account without them
knowing. When considering performance, using session has some significant downsides,
especially in a microservice system. All data has to be stored at the server side and has to be
retrieve for every request of a user. This introduces a significant load on the Authentication
Service. In the case of multiple running instances (which is important, as high scalability is
one of the main benefits of a microservice architecture) it has to be ensured that all requests
of a user are routed to the same instance of the Authentication Service. When using sessions
the verification for every request has to be done by the same service that created the session
and has therefore access to the session storage. This does not work well with the architecture
of the VIPER back end, where the Authentication Service is supposed to authenticate users
logging in and the Gateway Service is supposed to authenticate requests of logged in users.

Strasser 107 / 244

Chapter 6. Back End and System Design VIPER

Using JWTs In contrast to sessions, JWTs store all information at the client side, signifi-
cantly reducing the load on the authentication service but trading it for a higher network
load. JWTs contain all information necessary to identify a user (in the case of this project
just the user ID and role) and are signed with a signature, ensuring that the token cannot
be tampered with. When a user tries to log in, the authentication service creates a token,
containing all necessary information, along with some meta data like the expiration date and
signs it with a secret key. This token is returned to the user inside the Authorization header
of the HTTP response. The user then has to store the token and pass it in the Authorization
header of every request it makes to the VIPER back end. At the back end the Gateway Service
authorizes the user requests by checking if the JWT content and its signature match. This
process works very well with a microservice architecture, as no session information has to
be stored at the back end and different services can be used to issue and check tokens. The
downside of JWTs is the inability to revoke a token on the server side. The only way for a user
to revoke a token and therefore log out, is to delete it at the client side. If a malicious third
party has gotten access to the token, there is no way to invalidate it before the set expiration
date. A workaround would be to keep a black-list of logged out user’s tokens and check every
token against this list. But this would bring back some of the downside of sessions, given the
fact that this approach requires data to be stored at the back end.

Conclusion Even though JWTs have slightly worse security characteristics than sessions,
given their limited ability to be revoked, they provide some significant performance improve-
ments. Using sessions would introduce a heavy load on the Authentication Service and would
substantially hinder the ability to scale up the microservice system with multiple instances
of the authentication and Gateway Service. Thus, JWT was chosen as the authentication
technology for all external communication.

6.5.4.3 Authenticating User Login Requests

Authentication Filter The authentication of a user trying to log in is done with the class
JwtUsernameAndPasswordAuthenticationFilter which extends Spring Security’s UsernamePass-
wordAuthenticationFilter. This class is a filter, which is performed for every request to the
/login endpoint. The configuration shown in Listing 6.24 is necessary to enable this filter and
return a 401 (unauthorized) error if it fails.

108 / 244 Strasser

VIPER Chapter 6. Back End and System Design

1 protected void configure(HttpSecurity http) throws Exception {
2 http
3 // making sure to use stateless session
4 .sessionManagement ().sessionCreationPolicy(

SessionCreationPolicy.STATELESS)
5 .and()
6 // handle unauthorized attempts
7 .exceptionHandling ().authenticationEntryPoint ((req , rsp ,

e) -> rsp.sendError(HttpServletResponse.
SC_UNAUTHORIZED))

8 .and()
9 // Add a validation filter
10 .addFilter(new

JwtUsernameAndPasswordAuthenticationFilter(
authenticationManager (), jwtConfig))

11 }

Listing 6.24: Authentication Service security configuration to add the authentication filter

The authentication filter has two methods: attemptAuthentication, which attempts to
authenticate a user (shown in Listing 6.25) and successfulAuthentication, which is executed
if the authentication was successful. The attemptAuthenticationmethod creates an authen-
tication token out of the credentials provided by the user. This token is then used by the
AuthenticationManager to authenticate the user.

1 // 1. Get credentials from request
2 UserCredentials userCredentials = new ObjectMapper ().readValue

(request.getInputStream (), UserCredentials.class);
3

4 // 2. Create auth object for auth manager
5 UsernamePasswordAuthenticationToken authToken = new

UsernamePasswordAuthenticationToken(userCredentials.
getIdentification (), userCredentials.getPassword (),
Collections.emptyList ());

6

7 // 3. Authentication manager authenticates the user
8 return authManager.authenticate(authToken);

Listing 6.25: Attepting to authenticate a user using their credentials

If the authenticationwas successful, a new JWT is created and returned in theAuthorization
header of the HTTP response, as shown in Listing 6.26. The JWT is signed using the SHA-512
hashing algorithm and a 64 character (512 bit) secret stored in the JwtConfig class. Even
though the SHA hashing algorithm should not be used for password hashing, this paper shows
[62] that the combination of SHA-512 and a random secrete of sufficient length is secure. For
maximum security the secret used, is a cryptographically secure random string, generated
with the random string generator of this website [121].

Strasser 109 / 244

Chapter 6. Back End and System Design VIPER

1 long now = System.currentTimeMillis ();
2

3 // Create JWT
4 String token Jwts.builder ()
5 .setSubject(sub)
6 .claim("authorities", auth)
7 .setIssuedAt(new Date(now))
8 .setExpiration(new Date(now + exp * 1000))
9 .setIssuer("com.viper.service.authentication")
10 .signWith(SignatureAlgorithm.HS512 , secret.getBytes ())
11 .compact ();
12

13 // Add token to header
14 response.addHeader(jwtConfig.getHeader (), jwtConfig.getPrefix

() + token);

Listing 6.26: Creation of a new JWT

The complete JwtUsernameAndPasswordAuthenticationFilter class can be found in the
appendix under Listing 9.5.

User Details Service The aforementioned AuthenticationManager uses the class UserDe-
tailsServiceImpl, which extends UserDetailsService, to authenticate the provided credentials
against the database. The configuration telling the AuthenticationManager to use this class is
shown in Listing 6.27.

1 @Autowired
2 @Qualifier("UserDetailsServiceImpl")
3 private UserDetailsService userDetailsService;
4

5 protected void configure(AuthenticationManagerBuilder auth)
throws Exception {

6 auth.userDetailsService(userDetailsService).passwordEncoder(
sCryptPasswordEncoder ());

7 }

Listing 6.27: AuthenticationManager configuration

The UserDetailsServiceImpl has the method loadUserByUsername, which takes the provided
credentials and looks for a matching customer or developer in the database. If the user is
found, a new User object, containing the credentials and the role, depending on the type
of user account, is returned. If no matching user is found in the database, an exception
is thrown and a 401 error is returned. The possible roles are ROLE_USER (for customer
accounts) and ROLE_DEV (for developer accounts). Developers can also have the additional
role ROLE_ADMIN which allows them tomake certain request normal developers cannotmake.

110 / 244 Strasser

VIPER Chapter 6. Back End and System Design

An example of how the customer account information is retrieved is shown in Listing 6.28.
The complete UserDetailsServiceImpl class can be found in the appendix under Listing 9.6.

1 List <GrantedAuthority > grantedAuthorities = new ArrayList <>();
2

3 // Retrieve customer account from database
4 Optional <User > optionalUser = userRepository.

findByEmailOrUsername(identification , identification);
5

6 // Check if customer exists
7 if(optionalUser.isPresent ()) {
8 User user = optionalUser.get();
9

10 // Set role
11 grantedAuthorities.add(new SimpleGrantedAuthority("ROLE_USER

"));
12

13 return new org.springframework.security.core.userdetails.
User(user.get_id ().toHexString (), user.getPassword (),
grantedAuthorities);

14 }

Listing 6.28: Retrieving the customer account to authenticate a user

6.5.5 Authentication at the API Gateway

Like the Authentication Service, the Gateway Service also has a Spring Security filter for
authentication.

6.5.5.1 The JWT Authentication Filter

Spring Security Configuration The gateway’s JwtTokenAuthenticationFilter, which inherits
from Spring Security’s OncePerRequestFilter is, as the name implies, executed once for every
incoming request. The gateway also has a Spring Security configuration class with a structure
comparable to what is shown in Listing 6.23. The configuration from Listing 6.29 is necessary
to enable the filter and return a 401 (unauthorized) error if it fails.

1 protected void configure(HttpSecurity http) throws Exception {
2 http
3 // making sure to use stateless session; session won't

be used to store user's state.
4 .sessionManagement ().sessionCreationPolicy(

SessionCreationPolicy.STATELESS)
5 .and()
6 // handle unauthorized attempts

Strasser 111 / 244

Chapter 6. Back End and System Design VIPER

7 .exceptionHandling ().authenticationEntryPoint ((req , rsp ,
e) -> rsp.sendError(HttpServletResponse.

SC_UNAUTHORIZED))
8 .and()
9 // Add a filter to validate the tokens with every

request
10 .addFilterAfter(new JwtTokenAuthenticationFilter(

jwtConfig), UsernamePasswordAuthenticationFilter.
class)

Listing 6.29: Spring Security configuration of the Gateway Service enabling the JWT authenticaiton
filter

Authentication Process Inside the JwtTokenAuthenticationFilter the JWT is parsed and all
claims (e.g. the expiration date) as well as the signature are checked. If these checks are
successful, the user ID stored in the token is taken and put into Spring Security’s SecurityCon-
textHolder for further processing. The most important steps of this verification process are
shown in Listing 6.30. The complete JwtTokenAuthenticationFilter class can be found in the
appendix under Listing 9.7.

1 // Validate the token
2 Claims claims = Jwts.parser ()
3 .setSigningKey(jwtConfig.getSecret ().getBytes ())
4 .parseClaimsJws(token)
5 .getBody ();
6

7 String id = claims.getSubject ();
8

9 // Create auth object
10 UsernamePasswordAuthenticationToken auth = new

UsernamePasswordAuthenticationToken(id, null , authorities.
stream ().map(SimpleGrantedAuthority ::new).collect(
Collectors.toList ()));

11

12 // Authenticate the user
13 SecurityContextHolder.getContext ().setAuthentication(auth);

Listing 6.30: Validation of the JWTs

6.5.5.2 Zuul Authentication Filter

After Spring Security’s JWT authentication filter, another filter is executed. This filter is
built using Zuul’s filtering framework and has two purposes: blocking requests a user is
not allowed to make and adding a custom ID header to every request. The decision which
endpoints a user is allowed to access is made based on the the role stored inside the JWT. If a
user makes a request to an endpoint they are not allowed to access - e.g. a customer making

112 / 244 Strasser

VIPER Chapter 6. Back End and System Design

a request to an endpoint of the Developer Web Service - the request is blocked by Zuul and
a 403 (forbidden) error is returned. The implementation of this filter can be found in the
appendix under Listing 9.8 (in the authorizemethod). If the request was not blocked by the
filter a custom ID header, containing the user ID of the user making the request is added, as
shown in Listing 6.31. The value of this header lets downstream services know which user
made the request they are receiving.

1 RequestContext ctx = RequestContext.getCurrentContext ();
2 HttpServletRequest request = ctx.getRequest ();
3

4 ctx.addZuulRequestHeader("ID", request.getUserPrincipal ().
getName ());

Listing 6.31: Adding a custom ID header to every request

6.5.6 API Service

The API Service is the back end of all applications using VIPER and the smallest service in
the VIPER microservice system. It only has two ReST endpoints: /accounts for retrieving
a list of all payment accounts of the currently logged in customer and /pay for executing
payments. The reason for making this a distinct service, even though the functionality is
so minimal, was the fact that this combined functionality does not fit to any of the other
services. Additionally, there are plans to expand the service’s functionality in the future.

The API service uses the same endpoint at the Customer Web Service, that is used by the
website to retrieving a list of all payment accounts. At the /pay endpoint, the API Service first
checks the provided API key and resolves it to the organization ID and application ID, before
forwarding it to the Payment-Broker Service for further processing.

6.5.7 Security

Many security aspects of the communication with third parties over the Internet have already
been covered in the previous sections (mainly subsubsection 6.5.2.3, subsection 6.5.3, sub-
section 6.5.4 and subsection 6.5.5). This section will expand on the ideas of previous sections
and try to resolve some additional security concerns.

6.5.7.1 Exoscale Firewall

The firewall provided by Exoscale is one of themain lines of defense for theVIPERmicroservice
system. The firewall allows all microservices to communicate with each other, without being
exposed to the Internet. This is achieved by putting all Exoscale instances that contain
microservice into same security group. This security group is then configured to block all
incoming traffic from the Internet to all ports. For Exoscale instances inside this security group
communication over the ports 8000 (inter-service communication), 8761 (communication
with Eureka) and 8788 (communication with the Config Service) is allowed.

To allow the API gateway to communicate with the outside world, an additional secu-
rity group was created, which explicitly allows incoming traffic on port 80 and 443 for this
single service. Having this firewall configuration in place eliminates any possibilities of

Strasser 113 / 244

Chapter 6. Back End and System Design VIPER

unwanted, unauthorized requests to any of the microservice (except the gateway). But as
already mentioned in subsubsection 6.5.2.2, since the Gateway Service is exposed to the
Internet, incorrect configuration of Zuul routes could still pose a security threat by exposing
private endpoints of services.

6.5.7.2 Using HTTPS

One of the most important measures to keep communication secure is encrypting said com-
munication. Thus, all communication over the Internet is encrypted by the use of HTTPS.

Spring Security HTTPS Configuration The API Gateway Service only allows request to
port 443 using HTTPS. This is achieved with the Spring Security configuration shown in
Listing 6.32.

1 protected void configure(HttpSecurity http) throws Exception {
2 http
3 .requiresChannel ()
4 .anyRequest ().requiresSecure ()
5 }

Listing 6.32: Spring Security configuration to only allow communication over HTTPS

SSL Certificate To use encrypted communication over HTTPS, an SSL certificate is required.
As the system developed in this project is just a prototype, a free SSL certificate, issued
by Let’s Encrypt [88] was used. This certificate was provided in the form of a .pem file and
had to converted to a PKCS#12 keystore (for more detail see [34]), to be used with the Java
application. The configuration in Listing 6.33 is required to enable the use of TLS in Spring,
using the SSL certificate of the created keystore.

1 # port
2 server.port =443
3

4 # SSL
5 server.ssl.enabled=true
6 server.ssl.key -store -type=PKCS12
7 server.ssl.key -store=classpath:keystore/viper.p12
8 server.ssl.key -store -password=some_secret_keystore_password
9 server.ssl.key -alias=viper

Listing 6.33: Spring SSL configuration

6.5.7.3 CORS

To prevent unwanted traffic to the back end services, no other website than the official VIPER
website should be able to make request it. Thus, a Cross Origin Resource Sharing (CORS)

114 / 244 Strasser

VIPER Chapter 6. Back End and System Design

configuration was created to only allow requests originating from a viperpayment.com URL.
The Spring Security configuration shown in Listing 6.34 was used to achieve this goal. This
configuration allows all requests originating from viperpayment.com or www.viperpayment.com
with any URL path. It also contains configurations to allow and expose the Authorization
header, which is required for authentication to work properly.

1 public CorsConfigurationSource corsConfigurationSource () {
2 CorsConfiguration configuration = new CorsConfiguration ();
3 configuration.setAllowedOrigins(Arrays.asList("http ://

viperpayment.com", "https :// viperpayment.com", "http ://
www.viperpayment.com", "https ://www.viperpayment.com"));

4 configuration.setAllowedMethods(Arrays.asList("GET", "POST",
"DELETE", "PATCH", "OPTIONS"));

5 configuration.addAllowedHeader("content -type");
6 configuration.addAllowedHeader("authorization");
7 configuration.addExposedHeader("Authorization");
8 UrlBasedCorsConfigurationSource source = new

UrlBasedCorsConfigurationSource ();
9 source.registerCorsConfiguration("/**", configuration);
10 return source;
11 }

Listing 6.34: Spring Security CORS configuration

Strasser 115 / 244

Chapter 6. Back End and System Design VIPER

6.6 Infrastructure Services

Infrastructure services are services within the microservice system, that do not contain any
business logic, but rather manage all other services and help them to work together. In the
VIPER back end these are the Config Service, which distributes configuration files and the
Eureka Service, which allows all microservices to find each other.

6.6.1 The Configuration Service

The Config Service is built using Spring Cloud’s Config Server. All other microservices use
Spring Cloud Config to receive configurations from the Config Service.

Configuration of the Config Service The Spring Cloud Config Server functionality can
be added to a service by adding the Maven dependency from Listing 6.35. Additionally, the
@EnableConfigServer annotation has to be added to the main Spring Boot application class.

1 <dependency >
2 <groupId >org.springframework.cloud </groupId >
3 <artifactId >spring -cloud -config -server </artifactId >
4 </dependency >

Listing 6.35: Maven dependency of the Spring Cloud Config Server

The Spring Cloud Config Server needs a Git repository from which the configuration files
can be loaded and distributed. The location and access to this Git repository is configured
with the configuration shown in Listing 6.36.

1 spring.cloud.config.server.git.uri = https://git.viperpayment.
com/viper/service -config.git

2 spring.cloud.config.server.git.username=some_username
3 spring.cloud.config.server.git.password=some_password

Listing 6.36: Config service Git repository configuration

Configuration of the Clients The clients of the Config Service, which are all othermicroser-
vices, need to add the Maven dependency from Listing 6.37 and the configuration shown in
Listing 6.38. It is important to put this configuration into the bootstrap.properties file and not
application.properties, which is the standard Spring configuration file. application.properties
is replaced once the configuration from the Config Service is loaded. In addition to the Config
Service address, the bootstrap.properties file has to contain the name of the Spring application
to tell the Config Service which configuration files should be distributed.

116 / 244 Strasser

VIPER Chapter 6. Back End and System Design

1 <dependency >
2 <groupId >org.springframework.cloud </groupId >
3 <artifactId >spring -cloud -starter -config </artifactId >
4 </dependency >

Listing 6.37: Maven dependency of the Spring Cloud Config client

1 # Spring application name
2 spring.application.name=customer
3

4 # IP and port of the config service
5 spring.cloud.config.uri=http:// 194.182.173.3:8788

Listing 6.38: Configuration of a Spring Cloud Config client

6.6.2 Service Registry with Eureka

As Newman mentioned in his book, automatic service discovery becomes increasingly impor-
tant, as a microservice system grows [111, p. 397]. The VIPER back end uses Netflix’s Eureka
(for more details see [111, p. 403]) for this purpose. Eureka has two parts: the Eureka Server
and the Eureka Client.

Eureka Server Setup and Configuration The Eureka Server allows clients to register and
periodically broadcasts a list of all registered clients. To add the Eureka Server functionality
to a service the Maven dependency from Listing 6.39 has to be added. Additionally, the
@EnableEurekaServer annotation has to be added to the main Spring Boot class.

1 <dependency >
2 <groupId >org.springframework.cloud </groupId >
3 <artifactId >spring -cloud -starter -netflix -eureka -server </

artifactId >
4 </dependency >

Listing 6.39: Spring Cloud Netflix Eureka Server Maven dependency

To allow communication between the Eureka Server and Eureka Clients they have to
be in the same region and zone. The zone configuration of the Eureka Server is shown in
Listing 6.40. The corresponding zone configuration of a Eureka Client is shown in Listing 6.42.
The complete Eureka Server configuration can be found in the appendix under Listing 9.9.

Strasser 117 / 244

Chapter 6. Back End and System Design VIPER

1 # zone configuration
2 eureka.client.region=at-vie -1
3 eureka.client.availability -zones.at-vie -1= default
4 eureka.client.service -url.defaultZone=http:// localhost :8761/

eureka/
5 eureka.instance.metadata -map.zone=default

Listing 6.40: Eureka Server zone configuration

Eureka Client Configuration For Eureka Clients, which are all microservice except the
Eureka and Config Service, the Maven dependency from Listing 6.41 is required. Additionally,
the Eureka Client configuration, which can be found in the appendix under Listing 9.10, is
needed. This configuration mainly contains timeouts, polling intervals and zone configura-
tions (which can also be found in Listing 6.42).

1 <dependency >
2 <groupId >org.springframework.cloud </groupId >
3 <artifactId >spring -cloud -starter -netflix -eureka -client </

artifactId >
4 </dependency >

Listing 6.41: Eureka Client Maven dependency

1 # zone configuration
2 eureka.client.prefer -same -zone -eureka=true
3 eureka.client.region=at-vie -1
4 eureka.client.availability -zones.at-vie -1= default
5 eureka.client.service -url.default=http:// 194.182.175.254:8761/

eureka
6 eureka.client.service -url.defaultZone=http:// localhost :8761/

eureka

Listing 6.42: Eureka Client zone configuration

118 / 244 Strasser

VIPER Chapter 6. Back End and System Design

6.7 Payment Technologies and Services

To understand the possibilities of payment and how payments are implemented, an overview
of payment in general and associated technologies is presented.

6.7.1 Payment Requirements

The payment microservices are one of the most important parts of this project. They are
responsible for communicating with outside payment services, execute transactions, commu-
nicate errors and retrieve information about the transactions. A payment service needs to
handle and save the payment information securely. Payment itself is a sensitive topic and
comes with great legal responsibility. Thus the service should outsource this responsibility
and the associated risks as much as possible. Popular payment methods are favoured and
should be implemented first to maximize the possible userbase. Lower transaction fees are
preferred, since this reduces the fees for organizations using this project. The payment-flow
from the customer to the organizations must be as smooth as possible and not pose a barrier.
The payment system should support as many different currencies as possible, to ensure
that many people can use it. Finally, the services have to be able to execute transactions
autonomously and without human interaction.

6.7.2 Value Transfer

The aim of this project is to enable payment in restricted environments. In other words, the
two user groups customers and organizations need to be able to exchange value assets. To
implement automatic payments, both parties have to use assets that can be managed without
user interaction. Whatever assets will be used for the exchange, in the end the value has to be
convertible to a real currency on a bank account, which represents both users point-of-view
and an axiom for this payment system. Payment cards like credit or debit card represent an
information link to a bank account through the associated numbers on them. The exchange
of value in this context means using this information to move assets from one bank account
to another.

The electrical exchange of money is done via Electronic Funds Transfer (EFT). EFT is defined
as “a funds transfer initiated through an electronic terminal, telephone, computer (including
on-line banking) or magnetic tape for the purpose of ordering, instructing, or authorizing a
financial institution to debit or credit a consumer’s account” [30].

Wire Transfer
Wire transfer where first launched by the Western Union in 1872, using the telegraph network
to send information. The operations required for a Wire transfer are shown in Figure 6.8.
Transfer of the money does not happen instantaneous and can take from multiple hours to
a few days. The fees for such a transaction are different for each bank and country, but are
usually around 25$ per transaction. Domestic transactions are often times cheaper.

Ebenstein 119 / 244

Chapter 6. Back End and System Design VIPER

Figure 6.8: Diagram of a Wire transfer.
1. The initiator make a transaction request at his bank (electronically) and supplies the
amount he wants to transfer and the target bank account, identified by International Bank
Account Number (IBAN) and Business Identifier Code (BIC) codes. 2. The bank forwards the
request to the responsible bank. 3. The reviving bank executes the transactions supplied. 4.

The receiver receives money on his bank account.

Automated Clearing House (ACH)
An ACH is a “electronic network for financial transactions” [133]. It is a computer-based
version of a Clearing House and is specialized on payments. The operations required to
execute a transaction via a ACH are show in Figure 6.9. As mentioned by Pritchard, since
ACH are electronic they require few resources and can executed completely autonomously
[127]. Furthermore, they make it easy to keep track of income and expenses and thus reduce
accounting efforts. Also a ACH offers a unified way of making transactions across banks
and countries. ACH operators charge a fee per transaction either based on the transaction
amount or a fixed price. Generally those fees are higher for small business, because they are
volume based, and thus ACH systems are use mainly by big companies. There are different
requirements for the settlement time. The most common duration for a transaction is 3 days,
but there are also single day transactions. To reference a bank account the numbers on credit
or debit cards are used.

Nearly every country has specific ACH operators, in Austria the Geld Service Austria (GSA) is
one of themain ACHs. In the United States of America (USA) there aremultiple big system and
most of them are based on the ACH Network managed by the National Automated Clearing
House Association (NACHA). The European Union (EU) also has its own ACH for the Single
Euro Payments Area (SEPA) called Pan-European automated clearing house (PE-ACH).

120 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

Figure 6.9: A diagram of the typical ACH operations [108].
1. The customer sends a transaction initiation request to a bank (A) electronically. 2. The
bank gathers all transaction request for all users per ACH. Periodically a request is send to the
ACH with all gathered transaction requests combined and sorted. This is done periodically, at
least once a day. 3. The ACH operator combines all information from all banks within a cycle,
occurring multiple times a day. In this cycle the received request are checked and verified. 4.
All banks get informed about the net settlement amount the are responsible for in this cycle.
Once all banks (B) sends the settlement amount to the ACH and cover all transactions, the
cycle is complete. 5. A bank account (A) get credited, while another one get debited (B).

Payment Service Provider
PSPs hide underlying EFT and offer a single point-of-contact solution for payments. The
payment flow of a PSP transaction can be seen in Figure 6.10. Most PSPs offer a so called
payment gateway to handle the requests. “A Payment Gateway authenticates and routes
payment details in an extremely secure environment between various parties and related
banks” [125].The benefits of such a service include:

• Available at all times

• Real time authorization and rapid transaction processing

• Reporting and statics generation

• Merchants have to care less about payment and take little responsibility

• Single point-of-contact and abstraction

• Less (legal) responsibility; Trying to minimize for more customers.

• Potentially lower fees than when using EFT, since huge amount of transactions are
processed.

The time required to transfer funds is completely dependent on the underlying payment
method and thus can take from multiple hours to a few days.

Ebenstein 121 / 244

Chapter 6. Back End and System Design VIPER

Figure 6.10: Typical payment flow of a PSP [70].
1. A customer wants to buy something in an online shop. 2. The customer gets forwarded to
the PSP where he enters his credentials or bank data, and payment information and agrees to
purchase the selected products. 3. The PSP sends a confirmation notice and the purchase is
completed from their point of view. 4. A request to money transfer service is sent. 5. The
transfer service requests the necessary funds from the responsible bank. 6. The retailer

receives the money (minus processing fees) on his deposited bank account.

122 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

6.7.3 Storing Payment Information

To automatically execute payments, the information entered by the customers has to be
stored securely and be available at the Point-Of-Sale.

6.7.3.1 Raw Data

The easiest approach is simply storing the card numbers in a database. The big problem
with this solution is that saving this information comes with great legal responsibility and
compliance requirements. The Payment Card Industry Data Security Council (PCISSD) is an
international security standard for handling payment card information. The violation of this
standard results in penalties, often in the form a fines reaching from 5000$ to 100,000$ per
month. [28]

6.7.3.2 Digital Wallets

According to a 2016 paper, a digital wallet offers at least the following base functionality
[123]:

• “It offers secure enrollment of the user (application download, identity check) and
secure provisioning of credentials (e.g., user ID and password for wallet access)”

• Stores credentials, payment information, addresses and other information securely.

• The wallet is funded by a physical store of value, such as payment cards, bank accounts
or virtual currencies.

• Tokenization: The payment information is converted into a data string that can be used
by third parties for transactions, without actually supplying the real credentials.

The secure data storage and anonymization through tokenization are the biggest advantages
of digital wallets and correlate with the requirements for this project. A user only has to
register his account once via a wallet provider and can submit the tokenized account via the
website. The payment service uses this token to execute a transaction via an appropriate
PSP. All mayor smartphone operating systems have their own digital wallets. There are many
more digital wallet issuers, which also offer wallets for different platforms. Almost all PSPs
store their customer’s payment information in a form of digital wallet. Platforms like PayPal
and Amazon also offer interfaces to access them. [123]

6.7.3.3 Vaulting Payment Methods

Some PSP offer a feature called vaulting, which means that they store the payment informa-
tion for you as a digital wallet. This wallet is referenced by an id that can be stored in any
database without security concerns and used to make transactions at any time. This puts the
legal and security responsibility into the hand of the PSPs. How the payment information is
send to the PSP in the first place depends on the PSP. This step is also crucial for whether
VIPER had the possibility of seeing the payment information at any point in time determines
the PCISSD compliance and thus it is better to have as little payment information as possible
at any point in time.

Ebenstein 123 / 244

Chapter 6. Back End and System Design VIPER

Vaulting is the preferred way to store the payment information. Digital wallets may also be
used to support PSPs that do not offer vaulting.

6.7.4 Payment Flow

When it comes to executing transactions, VIPER shares many similarities to PSPs. VIPER
wants to offer a single point-of-contact for customers and developers, and also be able to
support many different payment methods. Because of these similarities, VIPER could become
a PSP and execute transactions via ACH or Wire networks. This would have the advantage
of having absolute control over the payments and being independent of any other services
but the payment networks. Only the fees for the EFT and no additional charges of any third
party apply. The decision fell strongly against this idea, since these advantages are negligible
considering the legal responsibility and knowledge required. The implementation of a PSP
requires banking knowledge and experience and strong collaboration with payment network
and would mean a great administrative overhead. Instead of reinventing the wheel, VIPER
represents an abstraction of existing PSPs, which are legally responsible for the transactions
and already have a great infrastructure. VIPER thus offers many payment methods and
combines the strengths of the used PSPs, without the customer noticing any difference
compared to a typical PSP. Furthermore, VIPER does not carry the responsibility of a financial
institution, but instead has the same level of responsibility as any retailer using a PSP. The
implementation of this abstraction can be done in different ways which are explained in this
section.

6.7.4.1 Centralized Flow

In a centralized payment flow, all the transactions are made to a VIPER owned bank account
and are forwarded to the organization account. For details see Figure 6.11. The advantage
of this payment flow is that the Organization only needs to supply a bank connection to
receive money and do nothing else. On the other hand, this again creates the problem of
transferring themoney without a PSP. In this case a ACH transfer could be used, but this would
again introduce the aforementioned problems and contradicts the single-point-of-contact
advantage. Furthermore, this would again create legal responsibilities for VIPER.

124 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

Figure 6.11: Diagram of a centralized payment flow.
1. The customer sends a transaction request to the VIPER service. This is done by the client
library in the application he is using. 2. The VIPER service sends an appropriate request to
the responsible PSP. 3. The PSP transfers the money to the VIPER bank account. 4. The

organization receives the transaction amount, minus transaction fees.

6.7.4.2 Indirect Flow

The indirect approach focuses on reducing the legal responsibility by only indirectly taking
part in the transaction. The core idea is that instead of using a VIPER owned PSP account,
a Organization owned PSP account is used. For further details see Figure 6.12. With this
solution the transaction happens between the Customer and the Organization directly and
VIPER only receives the fees directly from the Organization. To simplify the fee payment
process and automate it, this solution can be reused by replacing the Customer with the
Organization and the Organization with VIPER. This approach drastically reduces the legal
responsibility since the Organization has to comply with PSP rules. A downside of this is that
the Organization now has to create PSP accounts for them selves. A possible solution is to
create the PSP accounts automatically for them, but this is currently not possible, since no
PSP provides any features for doing so. In the future possible partnerships with PSPs could
make this possible. Despite the disadvantages, the reduction in legal responsibility has led
us to the conclusion that this payment flow is best suited for VIPER.

Ebenstein 125 / 244

Chapter 6. Back End and System Design VIPER

Figure 6.12: Diagram of a indirect payment flow.
1. The customer sends a transaction request to the VIPER service. This is done by the client
library in the application he is using. 2. A PSP account provided by the organization is used

to send a request to the responsible PSP. 3. The PSP transfers the money the the
Organization bank account. 4. The organization pays fees to VIPER.

6.7.5 Payment Service Provider Comparison

In this section most important PSPs are compared and an overview is presented. An overview
of the market-share per PSP can be seen in Figure 6.13

PayPal
PayPal is one of the first PSPs in the world and one of the biggest platforms for online
transactions today. This fact is represented by the huge market-share of nearly 50%, as seen
in Figure 6.13. According to PayPal, the platform is actively used by 1 million users in Austria
alone and by 267 million users worldwide [118]. Like most , PayPal uses digital wallets to
store the payment information. A reason for PayPals popularity among many customers is
their support service, which offers to manage conflicts between customers and retailers for
them. PayPal offers Vaulting for credit cards and supports nearly 30 different currencies.
Furthermore, all mayor credit card networks are supported along with debit cards. The API is
accessible via a ReST interface and thus supported by nearly all technologies, some of which
also have a wrapper library for the requests and data, for example python [117]. The PayPal
website offers extensive documentation of the API and guides to learn the fundamentals.
Paying with PayPal is free of charge and only retailers have to pay fees, which only apply for
each transaction and thus the PayPal account itself is free to use. For transactions with value
lower than 2,500€ the fees are 0.35 + 3.4% of the value. The variable fees change with the
transaction value range and are 2.9% above 2.500€, 2.7% above 10.000€, 2.4% above 50.000€
and 1.9% above 100.000€. PayPal supports more than 200 markets worldwide, more than any
other payment service.

126 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

Figure 6.13: Diagram of the top 15 PSPs by market share.
The percentage represents the share of websites that use this particular payment provider

from the Alexa Top 1M website ranking [4, 37, 141].

Stripe
After PayPal, Stripe is the largest PSP with a market share of 15%. Strip offers a variety of
payment options, including all major card types, wallets from 3rd parties, including Apple
Pay, Google Pay, WeChat Pay and Alipay. Furthermore, Stripe also supports ACH transaction
as-well as Klarna. European transaction are charged 1.4% + 0.3$ and other transaction
2.9%+0.3$. Strip offers an SDK for multiple platforms and a great documentation. Processing
times are in fixed intervals for different countries and financial conditions. For most purposes
a 7-business-day interval applies. Vaulting of payment card is supported. [154]

Ebenstein 127 / 244

Chapter 6. Back End and System Design VIPER

Apple Pay
Apple Pay is also one of the most popular services. It is only available on Apple devices
and the SDK is only available in Swift, Apples own programming language, and low-level C.
Apple Pay only charges the fees of the underlying EFT. The transaction time lasts from 1 to 3
business days. Apple pay also offers instant transactions, with transaction times as low as 30
minutes, but charge 1% (minimum 0.25$, maximum 10$) for it. Vaulting is not supported by
Apple Pay. [13]

Alipay Alipay is one of the largest online payment platforms, mainly focused on mobile
payment. This platform is interesting, since it is very popular in Asian countries and they
claim having 520 million registered users. It is not possible to implement Alipay without
registering first by supplying documents for a legal entity. The SDK is solely ReST-based and
little documentation is available. Fees range from 2.2% below a monthly transaction volume
of 1 million RMB down to 1.6% above 10 million RMB volume per month. Processing times are
around 1 business day. AliPay manly supports Chines bank cards, but also some international
credit cards, aswell as ACHmethods andWestern Union. Alipay does not support vaulting. [3]

Amazon Pay Amazon pay is a subsidiary of Amazon, an e-commerce company. The pay-
ment service uses the companies consumer base and uses their already submitted payment
methods to execute payments. The main focus of Amazon pay is to make these accounts avail-
able outside their platform. Amazon has nearly 1.5 billion users worldwide, this means nearly
1.5 billion potential Amazon pay users, who already own an account. In reality Amazon pay
has a 8% market share and is gaining popularity. Amazon pay only supports credit and debit
cards, as well as Amazon gift cards. Amazon pay charges 2.9% for US domestic transaction
and 3.9% for cross-border transactions. The authorization of each transaction costs about
0.30$ for either transaction type. For integration purposes, Amazon pay offers a variety of
SDKs for different languages, but the documentation is of medium quality. Amazon pay holds
all orders for 30 minutes, in order to enable cancellations from both side. Processing times
should not be longer than a few business days, but can reach up to 21 business days. [106, 5]

Braintree Braintree is a subsidiary of PayPal and is thus tightly coupled with its features.
Braintree offers complete support for PayPal payments and all major card types. Digital
wallets like PayPal, Venmo, Apple Pay and Google Pay are supported. Also ACH methods are
supported, including Klarna. Fees for all transaction fees are 2.9% + 0.3$, except for PayPal
transaction, where PayPal’s fees apply. All payouts are either done via credit cards, taking
2-5 business days, or via PayPal. Vaulting is supported for payment cards, PayPal accounts
and ACH methods. Braintree offers a variety of SDKs for multiple platforms and offers a great
documentation. [24]

Cryptocurrency Cryptocurrencies are a relatively newmethod of payment and experienced
wide popularity in the last years. Its main advantage is that it is independent of banks and
completely anonymous. There are a variety of cryptocurrencies available, with Bitcoin and
Etherium being most popular ones. Because of the large amount of possible cryptocurrencies,
many implementations may be required. Fees can range from a few cents to tens of dollars,
depending on the traffic load. Processing times similarly can range from a few minutes up to
hours, but are almost always completed within a day. There are currently no PSP like services

128 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

available for cryptocurrencies, thus requiring deep knowledge of blockchain technology for
the implementation.

Technologie Po
pu
lar
ity

Ve
rsa
til
ity

Fe
es

AP
I q
ua
lit
y

Pr
oc
es
sin
g t
im
e

Va
ult
ing
su
pp
or
ted

Re
su
lt

Braintree 2 1 2 1 1 1 8

PayPal 1 2 3 2 1 1 10

Stripe 2 1 2 4 3 1 13

Amazon Pay 2 4 3 3 2 1 15

Apple Pay 3 4 1 5 2 2 17

AliPay 3 3 2 6 2 2 18

Cryptocurrencies 4 5 3 7 0 2 21

Table 6.1: The table above shows that Braintree is clearly the best choice as a PSP.

6.7.6 Payment Broker Service

The payment broker service plays a central role in the payment process and is used as an
additional abstraction level (see Figure 6.14). Instead of sending the payment request directly
to the payment services, the request is send to the broker who forwards them accordingly and
thus hides the different payment services. Furthermore, the payment broker is responsible
for storing the transaction objects.

Figure 6.14: Flow of a payment request via the payment broker.
1. A transaction request is send to the payment broker via the API service. 2. The payment
broker creates a temporary transaction object. 3. The transaction object is send to the

responsible payment service. 4. The payment service execute the transaction (for details see
subsection 6.7.7) 5. The transaction object is returned with a reference to the PSP attached. 6.
The transaction object is saved in the database. 7. A result message is returned to the

requesting service.

Ebenstein 129 / 244

Chapter 6. Back End and System Design VIPER

The payment-broker service is responsible for forwarding payment requests to the ap-
propriate payment-service and storing the resulting transaction object. When receiving a
payment request, the payment-broker sends a request to the client-web-service to verify
the sent authentication string for the given payment account. If the verification fails, the
payment request is aborted and an error message is returned (as shown in Listing 6.43).

1 @PostMapping("{id}")
2 public Response pay(@PathVariable("id") ObjectId id,

@RequestBody TransactionRequest request) {
3 Response customerResponse = customerService.authorize(id,

request.getAccount (), request.getAuthentication ());
4 if(customerResponse.getCode () != 0)
5 return new Error(1, customerResponse.getMessage ());

Listing 6.43: Authorizing user-initiated transaction

Once the user is verified, the Organization account owning the Application, which sent
the request, is queried and passed to the payment service associated with the given payment
account. Currently only the Braintree service is implemented and thus all request are sent to
it, as shown in Listing 6.44. In the future, the responsible payment service will be queried
from the customer-web-service and the requests adjusted.

1 ObjectId appId = new ObjectId(request.getAppId ());
2 Response orgResponse = developerService.getAppOrg(appId);
3 BraintreeTransaction braintreeTransaction = new

BraintreeTransaction ((String)orgResponse.getContent (),
request.getOrders (),request.getCurrency (),accountName);

4 Response braintreeResponse = braintreeService.pay(id, request.
getAccount (), braintreeTransaction);

Listing 6.44: Sending a transaction to a payment service

If the transaction is successfully executed, a transaction object is created, as shown in List-
ing 6.45. Otherwise an error message is returned.

1 Transaction transaction = new Transaction(id, new Date(),
currencyRepository.findByAbbr(request.getCurrency ()).get(),
appId , request.getInfo (), (String)braintreeResponse.

getContent (), orders);
2 transactionRepository.save(transaction);

Listing 6.45: Creating and saving a transaction object

130 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

6.7.7 Braintree Service

The Braintree service is an implementation of a payment service that uses Braintree as a
PSP. The steps required to execute a transaction are shown in Figure 6.15 and are applicable
to all possible payment service implementations with minor changes. A payment service is
responsible for storing the payment information and executing payments.

Figure 6.15: Flow of a transaction request to the Braintree service.
1. A transaction object is sent from the payment broker to the service. 2. The transaction
object is converted to a format required by the PSP. Additional information such as the

payment information, in this case the account token, is gathered. 3. The converted request
and the payment information is send to the PSP. 4. The PSP verifies all information and
executes the transaction accordingly. 5. A Braintree transaction object is returned to the
Braintree service. 6. The transaction object is extended by the required information from the

Braintree transaction object and send to the payment broker.

6.7.7.1 Account storage

The Braintree service has to store the information for the organization to execute payments
via Braintree and the tokens for the customers.

Organization account
Braintree requires 3 strings to be passed to their API to authenticate the retailer. These
strings can be retrieved from the Braintree dashboard in the API settings. The required
strings are: Merchant ID, an immutable string identifying the Braintree account, the public
key, a string used for encryption and the private key, a string used for decryption. These
Strings are handled in a Java object that can be seen in Listing 6.46 and store it as a JSON
document in a MonogDB database. The object is identified by the organization id, which
connects it to the entities stored in other services. A basic CRUD ReST interface is provided
to manage the accounts. The requests to do so are sent from the Developer-web service.

Ebenstein 131 / 244

Chapter 6. Back End and System Design VIPER

1 public class OrganizationAccount {
2 private ObjectId organizationId;
3 private String publicKey;
4 private String privateKey;
5 private String merchantKey;
6 }

Listing 6.46: Organization account object

Customer account

The customer account is used to store the reference to the vaulted payment method
managed by Braintree and the associated name given by the user. The object can be seen in
Listing 6.47. A basic CRUD ReST interface is provided to manage the accounts. The requests
to do so are sent from the Customer-web service.

1 public class CustomerPaymentAccount {
2

3 private ObjectId userId;
4

5 private String name;
6

7 private String token;
8 }

Listing 6.47: Customer account object

Braintree currently offers no functionality to share vaulted payment accounts between
merchants. This is problematic, since VIPER would have to vault the Customer’s payment
account for every organization they want to interact with. This means an extreme overhead
when creating an account and if the customer wants to remove or alter his payment infor-
mation, it has to be change in a lot of different places, which may lead to inconsistency.
Furthermore, the vaulting is only possible via the website and thus the customers would have
to re-enter their payment accounts for each organization. This means VIPER is currently
forced to use a centralized payment flow. Braintree is currently developing a so calledGranting
API, which allows the service to store all Customer payment account on the VIPER Braintree
account and thus store the information in one place only. As of March 2019, this API is in
a closed-Beta phase and cannot be used by everyone. The current implementation is based
on the Granting functionality, which will be shown in the next section. For presentation
purposes, VIPER currently relies on the centralized approach, which would require manual
money transfer to the organizations as of now.

132 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

6.7.7.2 Braintree Vaulting

Vaulting in a payment account means storing the payment information at Braintree without
having the raw information in the VIPER servers at any time. This is important, because
it greatly reduces VIPERs legal responsibility. All the steps associated with vaulting and
executing a payment can be seen in Figure 6.16. The first request is done by the website
as described in subsubsection 7.4.2.2 and is forwarded through client-web-service to the
Braintree service. The appropriate client token is returned by the code shown in Listing 6.48.
Here the defaultContext is used, which refers to the VIPER Braintree account, since the
service has to vault all data on this account for the reasons mentioned in the previous section.

1 @GetMapping("{id}/token")
2

3 public Response clientToken(@PathVariable("id") ObjectId id) {
4

5 String token = defaultContext.clientToken(id.toHexString ());
6

7 return new Success <>("collected token", token);
8 }

Listing 6.48: Client token creation

Ebenstein 133 / 244

Chapter 6. Back End and System Design VIPER

Figure 6.16: Diagram of the steps involving the Braintree Server [24].
1. A request is sent to the Braintree service. 2. The service returns the generated client-token
to the website. This token is used for the Braintree Web-SDK to be able to communicate

directly with Braintree. 3. The Customer enters his payment information via the website or a
pop-up window provided by the SDK. The website sends the information to the Braintree
Server, which saves the information, and returns a Nonce. 4. The Nonce is sent to the
Web-server and is used to reference the now vaulted payment method. 5. To execute a

transaction, a transaction request and a Nonce are sent to the Braintree Server.

This token is used by the website as shown in subsubsection 7.4.2.2. Once the user selects
an appropriate payment method, either a new window is opened where they enter their
informations and the data is directly sent to Braintree or the information is entered through
forms on the website and a request is created to send the data to Braintree. Either way, once
Braintree receives the data and validates it, a nonce string is returned to the Website. The
Braintree service could now query the payment methods for a user, but without knowing any
identifying information about them. This is problematic, since the service has to associate
the vaulted account with a name given by the user and thus need a reference to it. Braintree
identifies the accounts via the token, but since only the Nonce is received when vaulting
this information is useless. This problem was solved by sending the received nonce to the
Braintree service and matching it to the right account by creating a Nonce for each vaulted
method and comparing them. This can be seen Listing 6.49. The created Nonces have to be
the same, since a nonce string is valid for 24 hours and single-use thus receiving the same
string on the website and the service.

134 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

1 PaymentMethod getAccountFromNonce(String nonce ,String id){
2 List <? extends PaymentMethod > methods = getCustomer(id).

getPaymentMethods ();
3

4 for(PaymentMethod method: methods){
5 String cnonce = getNonce(method.getToken ());
6

7 if(nonce.equals(cnonce))
8 return method;
9 }
10

11 return null;
12 }

Listing 6.49: Matching nonces to assoicated payment methods

The token of this payment method is saved in a CustomerPaymentAccount object and now
references the vaulted method.

6.7.7.3 Payment Execution

The execution of a payment is done via request to the payment service. To payment is base
on an Transaction object, shown in Listing 6.50, which needs to be provided to the service.

1 public class Transaction {
2

3 private ObjectId organizationId;
4

5 private List <Order > orders;
6

7 private String currency;
8

9 private Name name;
10 }

Listing 6.50: Transaction object

This object tells the service which Organization receives the payment, what orders where
made, in which currency this transaction is to be executed and the name of the payment
account the user wants to use. Listing 6.51 shows an Order object, which consist of a descrip-
tion of the item, provided by the organization, the amount of items the customer wants to
buy and the price.

Ebenstein 135 / 244

Chapter 6. Back End and System Design VIPER

1 public class Order {
2

3 private String desc;
4

5 private int amount;
6

7 private long price;
8

9 }

Listing 6.51: Order object

Once the transaction is received, the appropriate OrganizationAccount object is loaded from
the database. This object is used to create a BraintreeContext object, which provides basic
functionality for interacting with the underlying Braintree Java library.The CustomerPaymen-
tAccount is loaded from the database by the name included in the Transaction object and the
id provided by the payment-broker.

To create a transaction request for Braintree, a Nonce has to be created. The Grant API
is used to give different Braintree accounts to the vaulted payment methods. In Listing 6.52
a grant request is created, which specifies that the consumer of the Nonce, in this case the
Organization involved in the transaction, is not allowed to store the payment account. The
created Nonce is then sent to Braintree via the SDK. If the request is successful a Nonce object
will be returned.

1 PaymentMethodGrantRequest grantRequest =
2 new PaymentMethodGrantRequest ().allowVaulting(false);
3

4 Result <PaymentMethodNonce > resultNonce =
5 defaultContext.gateway.paymentMethod ()
6 .grant(customerPaymentAccount.getToken (), grantRequest);
7

8 String nonce = resultNonce.getTarget ().toString ();

Listing 6.52: Creation of a shareable nonce

The created Nonce can be used to setup a transaction request, as shown in Listing 6.53.
The total value if the transaction is calculated by iterating all order objects and summing
up all prices times the wanted amount. The submitForSettlement option is used to actually
execute the settlement step, instead of just preparing the request and executing it manually
in the Braintree dashboard.oc

136 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

1 TransactionRequest transactRequest = new TransactionRequest ()
2 .amount(request.getPrice ())
3 .paymentMethodNonce(nonce)
4 .options ()
5 .submitForSettlement(true)
6 .done();

Listing 6.53: Setup of a transaction request

Line-item entries are created for the request, in order to communicate the exact details of the
purchase to the customer, the organization and VIPER for verification and legal reasons. Each
Order object for this transaction gets called with the toItemmethod shown in Listing 6.54 and
appends a line-item to the transaction. Each line-item requires a name, which corresponds to
the description property, a quantity number analogous to the amount field, the unit amount,
meaning price per item, and the total amount for all units. The service needs to tell Braintree
whether this is a credit item, like a refund or a discount, or debit item, a normal transaction
item. Since price is stored as an integer in cents, to prevent rounding errors, and the Braintree
SDK expects a BigDecimal object in hundred cent units with 2 decimal places, it needs to be
converted by dividing by 100 and rounding down to 2 decimal places. The rounding mode
down, in contrast to the floor mode, corresponds to truncating the number, instead of always
rounding down, thus avoiding rounding errors.

1 public void toItem(TransactionRequest transaction){
2 transaction.lineItem ()
3 .name(desc)
4 .quantity(new BigDecimal(amount))
5 .unitAmount(new BigDecimal(price).
6 divide(new BigDecimal (100), 2, RoundingMode.DOWN))
7 .totalAmount(new BigDecimal(price * amount)
8 .divide(new BigDecimal (100), 2, RoundingMode.DOWN))
9 .kind(TransactionLineItem.Kind.DEBIT)
10 .done();
11 }

Listing 6.54: Adding line items

Finally, to execute the transaction the request is send to Braintree, which verifies all
information and performs the necessary steps to transfer the money. This can be seen in
Listing 6.55.

1 Result <com.braintreegateway.Transaction > result =
2 context.execute(transactionRequest)

Listing 6.55: Execution of a transaction

Ebenstein 137 / 244

Chapter 6. Back End and System Design VIPER

6.8 Web Services

6.8.1 Service Design

The Customer and Developer Web Services are the back ends of the VIPER web application
(see chapter 7). The basic schema, used to implement these services can be seen in Figure 6.17.
This digram shows the basic architectural schema used in both Customer and Developer Web
Service. The RestController contains multiple endpoints over which it gets requests. The
business logic for handling these requests sits in the ServiceClass of the RestController. The
ServiceClass uses Repositories to retrieve Entities from the database and FeignClients to make
requests to other services. The results of handling a request are then returned back to the
RestController where Data Transfer Objects (DTOs) are used for the HTTP response. This
structure is expanded to multiple RestController classes in the actual services.

Figure 6.17: Basic schema of the customer and developer web service

6.8.2 Customer Web Service

The Customer Web Service is the back end of the customer part of the VIPER website. It
provides all functionality necessary for managing customer accounts, their settings and
payment methods.

Customer Database As detailed in subsection 6.3.3, the Customer Web Service uses a
MongoDB database. The architecture of this database is shown in Figure 6.18. The User is
the main entity of this database design. It has User Settings and Payment Methods. Only the
name, type, authentication method and authentication code of a user’s payment method are
stored at the Customer Web Service. A reference to the payment account, which is stored at
Braintree, is kept at the Braintree Service (see subsection 6.7.7).

138 / 244 Strasser

VIPER Chapter 6. Back End and System Design

Figure 6.18: ERD of the customer web service’s database

Using HTTP Status Codes With Feign For requests to the Authentication and Braintree
Service, HTTP status codes are used to determine the success of the request. To use sta-
tus codes the return type of the Feign Client request has to be feign.Response, as already
mentioned in 6.4.2.3. The status code of a feign.Response can be retrieved using the method
feign.Response::status. To convert the feign.Response object to an usable Response object the
code from Listing 6.56 was written. It takes the response body of the feign.Response, converts
it to a string and then uses a Jackson ObjectMapper to map the values of this string to a
Response object.

Strasser 139 / 244

Chapter 6. Back End and System Design VIPER

1 public Response convertFeignResponse(feign.Response response)
throws IOException {

2 String responseBody;
3

4 try (InputStream inputStream = response.body().asInputStream
()) {

5 responseBody = IOUtils.toString(inputStream ,
StandardCharsets.UTF_8);

6 }
7

8 ObjectMapper objectMapper = new ObjectMapper ();
9 return objectMapper.readValue(responseBody , Response.class);
10 }

Listing 6.56: Conversion of a feign.Response to a Response object

Payment Method Security Every payment method of a user is protected by an authentica-
tion code. How a user enters this authentication code is not governed by the back end. Both
the website and VR or AR applications can decide on the way the user has to enter the code
(PIN, pattern, etc.), but both have to be equal. Before sending it to the back end the code
has to be converted to a string. The code is then hashed using the Scrypt hashing algorithm,
as detailed in subsubsection 6.5.3.2. The code snippet in Listing 6.57 shows how the code
is encrypted and how it is verified. It is important to never compare the provided code with
the one stored in the database using String::equals, because the Scrypt hashing algorithm
produces a different output string for the same input, every time it is executed. Instead, the
SCryptPasswordEncoder::matchesmethod has to be used.

1 // Hash customer authentication code
2 passwordEncoder.encode(code);
3

4 // Verify customer authentication code
5 passwordEncoder.matches(code , user.getPaymentMethods ().get(

account).getCode ());

Listing 6.57: Hashing and verification of a payment method authentication code

6.8.3 Developer Web Service

The Developer Web Service is the back end of the developer part of the VIPER website. It
provides all functionality necessary for managing organizations and their developers and
applications.

Developer Database The Developer Web Service uses MongoDB as a DBMS (see subsec-
tion 6.3.3). The service’s database architecture is shown in Figure 6.19. Developer and Organi-
zation are the main entities of this database. Every Developer belongs to one Organization

140 / 244 Strasser

VIPER Chapter 6. Back End and System Design

and has Developer Settings. For Organizations the name, email, website and address is stored.
Organizations have Applications, which are actual applications of the organization that are
registered to use the VIPER payment system.

Figure 6.19: ERD of the developer web service’s database

DeveloperWeb Service API Design As the there are multiple roles within an organization,
the API of the Developer Web Service is different from the Customer Web Service. The
Developer Web Service has many endpoints that can only be accessed by developers with
admin privileges. These include the endpoints for changing organization and payment
information as well as endpoints for managing the developers of an organization. Different
from customers, developers who are not admins cannot change their own information. As the
main task of normal developers is to develop applications and not to manage an organization,
the VIPER back end does not allow them to do so.

Strasser 141 / 244

Chapter 6. Back End and System Design VIPER

6.9 Cloud Infrastructure

“Cloud computing is the on-demand delivery of compute power, database storage, appli-
cations, and other IT resources through a cloud services platform via the internet with
pay-as-you-go pricing” [6]. In other words, a cloud provider owns hardware, which is accessi-
ble via the internet, and offers the purchase of usage rights. The big advantages of using a
cloud service over a self hosted infrastructure are [6]:

• You only pay for what you use and do not have to maintain the infrastructure.

• It is cheaper, since the infrastructure is built at a large scale and thus the economic
principals of mass production apply.

• The infrastructure scales to needs of the services.

• Processes and software is standardized and preconfigured to work easy and fast. Also
support is available.

There are also a few downsides when using a cloud-provider:

• Big target for cyber-attacks; if the provider is attacked, the whole infrastructure may
suffer.

• Dependence on outside services, that cannot be fully controlled.

• Data security and eavesdropping concerns.

6.9.1 Cloud Service Providers

6.9.1.1 Requirements

A cloud-provider has to supply machines accessible in Austria and preferably with a Linux
OS, for performance and licensing reasons. Furthermore, dynamic scaling and data storage
has to be available. Deploying containerized applications also must be supported, because
containers are used to deploy our applications, as described in section 6.10. Themicro-services
require little resources, since they are meant to be as small as possible and be duplicated on
demand for more throughput. In Table 6.2 estimated cloud requirements are listed.

Service type RA
M
(G
b)

CP
U
(co
res
)

St
or
ag
e (
Gb
)

Ne
tw
or
k (
pe
r d
ay
)

Re
qu
ire
d i
ns
tan
ce
s

core-service 1 1 10 <1 mb 1-3

composed/infrastructure-service 1 1 10 1 mb 4-10

edge-service 2 2 10 2 mb 2-4

other (e.g Website, Gitlab) 4 2 100 <10 mb 2-5

Table 6.2: Estimated required resources for the services.

142 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

The cloud infrastructure is required from October 2018 until the end of the project in
March. This means that the services have to run approximately 6 months.

6.9.1.2 Choice

The VIPER team was able to securer a sponsorship from A1 digital, an Austrian consulting
company [43]. A1 digital is the parent company of Exoscale, a Swiss cloud provider, that fits
all requirements stated above [54]. The sponsorship of A1 digital was in the form of 5000$
worth of Exoscale credits. Exoscale offers multiple instance sizes, three of which are aligned
with requirements for our services. The Tiny instance offer 1 Gb of RAM and 1 CPU Core,
which fits the core-service and composed-service requirements and cost 11$ per month per
instance. Small instances fit the edge- and infrastructure-service needs with 2 Gb of RAM
and 2 CPU cores, costing 21$ per month per instance. Medium instance should fit all other
purposes, like the website-server and Gitlab, with 4 Gb of RAM and 2 CPU Cores, costing
42 $ per month per instance. Since the internal network communication is free-of-charge,
only the edge-services and non-service instances need to considered in network concerns.
Exoscale charges 0.02$/Gb for outbound Internet usage and 1$/Gb-month for Disk-space.
All of this amount to an approximate monthly cost of 300$ for running all services during
the project runtime. For the whole project span this is an expected cost of 1800$. Since the
sponsored amount of 5000$ is more than double the expected cost, Exoscale was chosen as
the cloud provider for this project. As of April 2019 the project consumed 1390$, which is
below the expected usage cost.

6.9.2 Exoscale

Exoscale has server infrastructure deployed in Switzerland, Germany and Austria. Server
instance can be created in any of the above countries, but only instance deployed in Austria
where used for this project. The instances that have been deployed primarily ran Ubuntu 18.04
64-bit, because all team members are familiar with Ubuntu and no OS specific functionality
is required. S3 object storage is also provided by Exoscale and was used to store website
assets, cache CI related data and store docker-machine keys (see subsubsection 6.10.1.2). The
Domain Name Service (DNS) service Exoscale provides was used for the website, the edge
services and the gitlab instance (see subsection 6.9.3). [54]

6.9.3 Version Control

For version control a private instance of Gitlab, a free tool for managing Git-repositories, was
setup on Exoscale. Individual repository for each microservice, demo and the website were
created. The microservice repositories all include gitlab-ci and docker configuration files and
a service folder, which includes the maven files and the service source code.

Ebenstein 143 / 244

Chapter 6. Back End and System Design VIPER

6.10 Service Integration and Deployment

To actually be able use theVIPER services, they have to be deployed on the cloud infrastructure.
This means that the programs have to be executed on a server and be assigned to an IP
address. Because every service and other program that needs to be deployed, for example
the website, depends on different libraries this can become difficult to do and may require
specific procedures for every service. Furthermore, the services also have their own databases,
which also need to be deployed. In order to avoid these problems a new level of abstraction
for the application is used, which is explained in the following section.

6.10.1 Containerization

The term containerization comes from the freight transport world and refers to the usage of
containers to handle cargo objects. Loading ships, trains or other vehicles with cargo was
a difficult process in the past, since the items had very different shapes and sizes and thus
required special handling. In the early 1900s containers where used to transport freight to
avoid these problems. Containers provide a fixed size framework to work with and thus all
items can be handled the same. In this way all operations associated with the transport of
freight can be optimized to handle predefined containers and thus improve performance. In
recent years software developers have adapted this concept to handle software. Instead of
handling software and dependencies on their own, the software is packed inside a container,
in this case a type of virtual machine. Instead of specific deployment procedures for every
software, the same procedure can be used for all deployments [105].

(a) Virtual machine diagram. (b) Containerized VM diagram.

Figure 6.20: Comparison of Virtual machines and containers [45].

144 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

As already noted by Mouat, containers are different from traditional virtual machines
[105]. Virtual machines run on a Hypervisor and each machine has its own operating system
and software installed (see Figure 6.20a). In contrast, a container system shares the virtual
operating system and only the software for each machine has to be installed, thus reducing
the required size significantly (see Figure 6.20b). This reduces the overhead for the underlying
OS and increases the overall performance and workload capabilities.

6.10.1.1 Docker

Docker is a containerization framework that is based on existing Linux virtualization tech-
nologies [47] . The definition for a docker container is written in a [Dockerfile]. an example can
be seen in Listing 6.58. It follows a simple command, arguments schema. At the beginning the
operating system required is defined with the FROM command. Not only operating systems
can be used here, but also existing containers on which this image is to be based. The name of
a container is always succeeded by a tag, identifying a version or in the special case of [latest]
the most recent version. To build and mange containers, the Docker Command Line Interface
(CLI) is used. For further command and CLI references see the official docker documentation
[46].

1 FROM ubuntu :15.04
2 COPY . /app
3 RUN make /app
4 CMD python /app/app.py

Listing 6.58: Example docker file

Microservice Containers
All micro-services are similar, since they are all based on Java Spring, which is deployed via
maven, and most of them also need a corresponding database.

1 FROM maven :3.6-jdk -8-alpine
2

3 EXPOSE 8000
4

5 ADD ./ service /tmp/service
6

7 ENTRYPOINT ["mvn","spring -boot:run","-f","/tmp/service"]

Listing 6.59: Typical docker file for a microservice

Most configurations look similar to the ones show in Listing 6.59. The base container
maven:3.6-jdk-8-alpine was chosen, because it already includes maven, which is required

Ebenstein 145 / 244

Chapter 6. Back End and System Design VIPER

for running the service. The services are exposed to different ports, depending on their
requirements. This Dockerfile is located inside each microservice repository and thus copies
the service folder into the container. When executing the container, the command mvn
spring -boot:run -f /tmp/service is executed to start the service inside it.

Almost all services use MongoDB as a database. The database could be installed directly
inside the services and thus avoiding having multiple services, but this would entangle these
two components. This means that these two parts always have to be deployed simultaneously,
which is unnecessary, if only one of them has changed. Furthermore, this would introduce
problems thatmicro services aremeant to prevent and thus it was decided to have the database
as a separate container. Having two or even more containers again introduces the problem
that every service cannot be treated the same and thus nullifies the benefits of containers.
Docker-compose was created to overcome this situation. With it multiple service can be
defined one file, share resources between them, have virtual networks and most importantly
handle the service as a single predefined unit. The definition is written in YAML and stored in
a docker-compose.yml file, which is required inside every microservice repository. An example
config can be seen in Listing 6.60. To deploy the service, docker -compose up has to be
called on a server. For more details see the official docker-compose documentation [44].

1 services:
2 braintree:
3 build: .
4 restart: always
5 ports:
6 - "8000:8000"
7

8 mongo:
9 image: mongo :4.0.3
10 restart: always
11 ports:
12 - "27017:27017"

Listing 6.60: Typical docker-compose file for a microservice

6.10.1.2 Docker Machine

To deploy a service one last step remains, namely getting the service on a server in the in-
frastructure. Either the whole repository could be sent to a server and the container built
there or build the repository somewhere else and just send the container to the server. Since
the latter option requires less bandwidth, is better suited for scaling, since no rebuilding is
required, and only includes the necessary parts of the service it was chosen by us. Docker
provides a tool called docker-machine, which install the Docker Engine on virtual hosts and
thus allows execution of docker containers inside them. Also many cloud providers are sup-
ported, including Exoscale.

146 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

Docker-machine enables the creation and management of instances inside Exoscale. To
create a instance, the Exoscale API keys are required. Furthermore, it is possible to set
the preferred availability zone, disk size and instance size. When executing the command
returned by docker -machine env name, the local docker Engine is bound to the docker-
machine and thus all docker or docker-compose commands are executed there. When creating
a machine, docker-machine saves the meta data and ssh keys inside the /.docker/machine
directory. Unfortunately, docker-machine does not provide a mechanism to synchronise this
configuration across machines. Thus it was decided to synchronize the folder via an Exoscale
S3 bucket. This is done via a tool called s3cmd, which connects to a S3 bucket and can perform
file and synchronization operations. All these steps were put together inside a bash script
that can be seen in Listing 6.61. This script takes two arguments, the name of the service,
which will also be assigned to the docker-machine, and the wanted instance size in Exoscale.
By default the instance size is micro (line 2). Before creating a docker-machine, the existing
config is gathered from the S3 bucket (line 4). If a docker-machine with the name already
exists, there is no need in creating a new one, since the services will be overwritten anyway
by docker if they have the same name. If no machine with the given name exists, a new one is
created and afterwards the newly created docker-machine configuration is synchronized. All
of this is done in line 6. Afterwards the environment is bound to the now existing machine
and docker-compose is used to deploy the service.

1 #!/bin/sh
2 SIZE=$2 || micro
3

4 s3cmd sync s3://viper -ci/machine/ ~/. docker/machine/
5

6 docker -machine ls | grep $1 || docker -machine create ... $1 &&
s3cmd sync ~/. docker/machine/ s3://viper -ci/machine/

7

8 eval $(docker -machine env $1 --shell bash)
9 docker -compose build
10 docker -compose up -d --force -recreate --no-build

Listing 6.61: Deploy script

Alternatively other tools could be used, for example Kubernetes, which is better suited
for automatic scaling and microservice management. It was decided to use docker-machine,
because all team members were already familiar with this tool and implementing Kubernets
or other tools within the infrastructure would have taken too long for this project.

6.10.2 CI/Continous Delivery (CD)

CI/CD refers to the process of merging the code to one central location and deploying it. This
is done to allow fast updates to the production environment and automatic deployment. In
the CI phase the code is tested and checked to ensure no bugs are introduced to the production

Ebenstein 147 / 244

Chapter 6. Back End and System Design VIPER

system. The actual deployment is associated with the CD phase [22].

In this context CI is responsible for building the services and testing them. After successful
testing, the deployment script can be called to cover the CD phase. These steps could be
implemented on any machine, preferably a server, by simply executing the containerization
and deployment steps listed before. This process could either be triggered by an event, like a
push to a repository, or be executed periodically, for example every night or hour. There are
many CI/CD system available, which offer different possibilities. Jenkins is one of the most
popular open-source tools. It runs on a on server and executes all steps there, allowing for
great customization and execution management [82] . TravisCI is also a very popular tool,
which runs on its infrastructure. It mainly supports Github repositories and has to be paid
for, in order to use it for commercial products [161]. It was decided to use GitlabCI, because it
is already available inside the existing Gitlab infrastructure and free to use.

6.10.2.1 Gitlab-CI

Figure 6.21: Diagram of Gitlab-CI [64].

Gitlab-CI is a CI/CD system provided by Gitlab. To set it up, the instructions on the official
Gitlab website were followed. Each repository that wants to use GitlabCI needs a .gitlab-
ci.yml file. The file defines in which docker-image the CI process will take place and which
steps are required to completed the CI process. The steps are defined by commands to be
executed inside the container and if any command does not return 0, the CI process fails.
The instructions for CD are also the be represented as a step in this file. The whole flow from
commit to deployment can be seen in Figure 6.21. For more details view the offical Gitlab-CI
documentation [65].

Since most service have similar setups, a custom docker-image on which the CI configu-
ration will be based was created. A new repository containing the deployment script, a
configuration file for the S3 connection and an additional docker-compose file for the moni-

148 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

toring services discussed in section 6.11 was created. The Dockerfile, based on a standard
docker image, for the machine copies all of these file inside the container, installs necessary
software like docker-machine, docker-compose and the s3cmd. Gitlab-CI configuration was
also included, which builds the image and stores it in the Gitlab docker registry to be accessi-
ble everywhere. A typical microservice Gitlab-CI configuration can be seen in Listing 6.62. It
uses the described docker image from the registry, starts the docker daemon and only needs
to call the deploy script to execute all further steps. This reduces the required configuration
for each service significantly and is independent of the actual CI/CD implementation.

1 image: docker.viperpayment.com/viper/ci-docker:latest
2

3 services:
4 - docker:dind
5

6 build:
7 stage: deploy
8 script:
9 - deploy -service SERVICE -NAME small

Listing 6.62: Microservice .gitlab-ci.yml config

Ebenstein 149 / 244

Chapter 6. Back End and System Design VIPER

6.11 Monitoring and Logging

Working with microservices adds an additional layer of complexity. The distributed and
self-contained nature of microservices makes it hard to trace errors and monitor the whole
system. Monitoring microservice architectures is a great challenge by itself and thus will not
be covered in detail here.

Logging
Logging is a crucial aspect ofmotoring, since it showswhat each services does andwhat causes
an error. The Elastic-stack offers solutions like Logstash that store all the logs centralized
and offers analytic tools to gain insights [50]. Since it is time consuming to setup such a
system, a logging infrastructure was not actually implement. Instead the the docker logging
functionality was used to view the live logs of the services. This is currently feasible, since we
only have a fair amount of micro-services. For future purposes a logging infrastructure and
analytic tools are needed.

Service
Monitoring also includes recording the system performance and detecting hardware failures
to ensure high-availability. To implement this, the existing Github repository dockprom
was used, which uses different technologies for monitoring [128]. It uses Prometheus, an
open-source monitoring solution, as the main framework [129]. To analyse the performance
and resource usage of docker-containers cadvisor is used [66]. The information is displayed in
a Grafana dashboard and shows the metrics of individual containers [68].

The dockprom repository unifies all these technologies using docker-compose and thus can be
used without further configuration. To actually show any data, the docker containers need to
send data to the dockprom service. This is done by defining the docker-compose services node-
exporter and cadvisor, as described in the README.md, in a file called monitor-compose.yml
inside the ci-docker repository on Gitlab, described in subsubsection 6.10.1.2. That way, it
is possible to simply use the complex definitions inside any microservice that needs to be
monitored by including the definitions shown in Listing 6.63 as docker-compose services.

1 nodeexporter:
2 extends:
3 file: ~/monitor -compose.yml
4 service: nodeexporter
5 ports:
6 - "9100:9100"
7 cadvisor:
8 extends:
9 file: ~/monitor -compose.yml
10 service: cadvisor
11 ports:
12 - "8080:8080"

Listing 6.63: docker-compose services for monitoring

150 / 244 Ebenstein

VIPER Chapter 6. Back End and System Design

6.12 Testing

Testing the back end is crucial to ensure it works as expected. The testing is divided into
different foci, namely database testing and integration testing. Unit testing is not useful for
microservices, since this only creates a new kind of test that need to maintained and nearly
no actual functionality is implemented inside a non core microservice, which is the majority.
Thus instead of unit testing the Integration testing is applied for each service on its own
interfaces.

6.12.1 Integration Testing

Testing the ReST interfaces and the business logic of the services is crucial to ensure they
work as expected. Testing the business logic within a service and functionality that requires
the collaboration of multiple services is indistinguishable on a interface level and thus does
not make a difference testing-wise. The Spring Framework offers many different testing
functionalities [145]. An example test implementation can be seen in Listing 9.1, where a
GET request is sent an the response is tested.

Testing a microservice infrastructure is difficult since a single service can depend on multiple
other services, which also have dependencies. The only possibility to test a microservice
and ensure all dependencies are available is to make an exact copy of the live system. This
testing step is called staging and requires the same infrastructure as the live system. To test
a service, it is deployed in the staging environment and the test case are executed and results
recorded. Since this setup is more complicated and requires way more infrastructure which
also costs money, staging was not implemented in this project. The testing was mostly done
in the production environment, which is a very bad practice, but since this project is only a
prototype and the time constraints did not allow for a sophisticated setup it was applied.

Integration testing for payment is difficult, since many parts are involved that are outside
the VIPER infrastructure. Furthermore, it takes a few days for a transaction to be settled and
thus testing it would require asynchronous testing which may take multiple day and thus
reduce the agility of the system. For this project it is necessary to assume that the payment
services work correctly and the transactions are settle correctly. What can be tested is the
response of payment API calls. Braintree offers testing functionality for their services and
thus the error handling and different unforeseen payment scenarios can be tested. [23]. This
mostly applies to authentication errors or insufficient fund exceptions.

Ebenstein 151 / 244

Chapter 6. Back End and System Design VIPER

6.12.2 Database Testing

All database tests are designed to be regression tests, ensuring that recent changes to the
database did not break any existing code. As the databases are only accessible from within
the microservice they belong to, no external database testing tools can be used to run the
database tests. Thus, the Spring Boot Testing Framework and JUnit were used [146]. The basic
setup of a Spring Boot Testing class is shown in Listing 6.64.

1 @ContextConfiguration
2 @RunWith(SpringRunner.class)
3 @SpringBootTest(classes = AuthenticationApplication.class)
4 public class DatabaseTest { ... }

Listing 6.64: Spring Boot Testing class

All test cases are implemented inside this class and have to be annotated with@Test.
The basic structure of these tests is to create a new entity, write it to the database, retrieve it
again and/or modify it in some way, to check if the final entity looks as expected. To ensure
that all tests are run under the same conditions and results are repeatable the database is
cleared before every test case, using an init method annotated with@Before. This means
that the database tests must not be run in a production environment as all data will be lost.
If these test are run automatically during the testing stage of a CI deployment, it has to be
ensured that a separate testing environment is created for performing the tests.

152 / 244 Strasser

VIPER Chapter 6. Back End and System Design

6.13 Client Library

The client library is an integral part of the VIPER payment system as it allows developers to
use VIPER with minimal development effort.

6.13.1 Programming Languages and Technologies

Requirements The technologies used to implement the client library have to allow for
the development of a library, which can be included in a wide variety of applications and
platforms. As the vast majority of VR and AR applications are developed using 3D graphics
engines, special focus has to lie on them.

The Programming Language Many of the most popular 3D engines support the use of
either C++ or C#, which both support C libraries (list of the most popular game engines [155]).
C libraries are also supported by other popular programming languages like Java (with JNA
[81]) and Python (with ctypes [35]). C libraries, which can be implemented using C++, are
not only support by a wide variety of popular programming languages but also on all popular
platforms. They can be compiled to a .dll for Windows and to a .so for Linux and Android.
Thus, C libraries and the C++ programming language fulfill all requirements stated above and
were chosen for implementing the client library.

C++ HTTP-Client Libraries The client library has to make HTTP request to the VIPER back
end. As C++ has no built-in HTTP library a third party library had to be used. Two popular
C++ HTTP libraries are POCO [124] and the Microsoft cpprestsdk [98]. Both libraries provide
all needed functionality. The cpprestsdk library has two advantages over POCO: it is more
lightweight and has a NuGet package for Android. Using this NuGet package with Visual
Studio significantly simplifies the development process of the Android application as no
dependencies have to be managed manually. For these reasons Microsoft’s cpprestsdk was
used for the client library.

6.13.2 Client Library Implementation

The core part of the client library containing all the business logic was written in C++ and can
be used for any platform. The interface, over which the client library function are called, had
to be written twice. Once for the Windows library (.dll) and once for the Android library (.so).

Client Library Design The digram in Figure 6.22 shows the design of the client library’s
main part. The Client class contains all business logic required to make payments. It has
methods for login and logout, for retrieving a list of available payment accounts and for
making a payment. All of these methods have a synchronous and asynchronous version. As
this client library is intended to be used in AR and VR it is important to provide asynchronous,
non-blocking functions. With synchronous functions the UI or virtual environment would
freeze for the execution time of the function, which can be multiple seconds in the case
of themake_paymentmethod. This would significantly impair the user experience of these
applications. The developers of these applications could call the functions inside a new thread
to resolve the issue, but this would contradict the basic idea of providing a client library,
as it should reduce development efforts. Thus, asynchronous, non-blocking versions of the

Strasser 153 / 244

Chapter 6. Back End and System Design VIPER

synchronous methods were created in the client library. In the end it was actually easier to do
it the other way around. The asynchronous methods were created first and the synchronous
versions were built using them.

Figure 6.22: UML class diagram of the client library. Some data types are shorted or left out to improve
readability

Using the cpprestsdk Library All HTTP requests with the cpprestsdk are built using asyn-
chronous tasks. The basic structure of any HTTP request is shown in Listing 9.11, which can be
found in the appendix. The most important parts of this structure are shown in Listing 6.65.

The call to the request function initiates the request. The following lambda function
is executed when a response is received. Here, the success of the request is determined.
Part of this is always to check the HTTP status code of the response. After doing so the
received response is returned to the following lambda function. In this function the response

154 / 244 Strasser

VIPER Chapter 6. Back End and System Design

is processed and, in the case of an asynchronous method, passed to a callback function.

1 //Make request
2 http_client(L"https ://api.viperpayment.com/path/to/endpoint").

request(request)
3 .then ([=](http_response response) -> pplx::task <

http_response > {
4 ...
5 return pplx:: task_from_result(response);
6 })
7 // Process response
8 .then ([=](pplx::task <http_response > previous_task) {
9 ...
10 if (callback)
11 callback (...);
12 });

Listing 6.65: The most important parts of making a HTTP request with the cpprestsdk

Building Requests The http_request that is passed to the request function as shown in
Listing 6.65, is built out of three parts: the request method, request headers and a request
body. An example of this can be found in Listing 6.66. First a request body in JSON format is
build. Then the http_request is created with a HTTP method (in this library only method::GET
and method::POST were used). An Authorization header is added with the JWT received in the
login request. At the end the previously created JSON request body is added.

1 // Building the JSON request body
2 json::value body;
3 body[L"property1"] = json::value (42);
4 body[L"property2"] = json::value(L"some value");
5

6 //Build HTTP requst
7 http_request request(methods ::POST);
8 request.headers ().add(L"Authorization", this ->jwt_token);
9 request.set_body(body);

Listing 6.66: Build HTTP requests for the cpprestsdk

Synchronous HTTPRequests To create a synchronous version of an asynchronousmethod
the whole method body could be copied into a new method and .wait() could be added to the
end of the taskmaking the whole request synchronous and blocking. But this code duplication
would make the client library harder to maintain. Thus, C++ promises [153] and futures [152]
were used to wait for the result of the asynchronous method, as shown in Listing 6.67.

First, a promise and future pair is create. The promise is the part that a value is written to
and the future is the part from which this value is read. Then, an asynchronous method is

Strasser 155 / 244

Chapter 6. Back End and System Design VIPER

called without passing a callback. This tells the method to pass its return value to the promise
instead of the callback, as shown in Listing 6.68. The future::getmethod blocks until a value
is written to the promise and then returns this value.

1 // Create promise
2 this ->get_payment_accounts_callback_promise = promise <vector <

Payment_Account >>();
3

4 // Create future of this promise
5 future <vector <Payment_Account >> get_payment_accounts_future =

this ->get_payment_accounts_callback_promise.get_future ();
6

7 //Call method without callback
8 this ->get_payment_accounts(NULL);
9

10 //Wait for result
11 return get_payment_accounts_future.get();

Listing 6.67: Using C++ promises and futures to make an asynchronous method synchronous

1 if (callback)
2 callback(payment_accounts);
3 else
4 this ->get_payment_accounts_callback_promise.set_value(

payment_accounts);

Listing 6.68: Setting the promise value if no callback is provided

156 / 244 Strasser

VIPER Chapter 7. Web Application

Chapter 7

Web Application

7.1 Introduction

Awebsite is a very powerful tool to provide and distribute content. The International Telecom-
munications Union (ITU) estimated that the internet usage worldwide was about 51.2 % at
the end of 2018.[79] That means that over half of the global population is currently using the
internet and the market is still growing. A website can be accessed by almost every device.
No matter if its a PC, a mobile device, a smart TV or a gaming console. Since not everyone
who has access to the internet also has access to a PC, a website is the most promising tool
for content distribution. Also, a website has the huge advantage, that it is not bound to any
type of device and therefore after being created once, it can be accessed by all the mentioned
devices. Considering this fact, a website is more affordable in development, because it only
has to be created once and not dependently for each different platform.
The latest trend shows, that more and more companies publish their applications on the web,
instead of creating platform dependent desktop applications or mobile apps. This has many
advantages for companies. First of all, they save a lot of money since they do not have to
buy any licenses to publish their applications in different stores. They also get effortless and
affordable marketing that helps to rapidly grow their community. Secondly, it also saves a lot
of time and resources because of the simple design flow and platform independence. Lastly,
a website has the advantage, that it gets picked up and gets shown by search engines like
Google or Bing.
In the case of VIPER an interface that communicates with the back end was needed, to enable
companies to create their applications and add their payout account and also enable users to
add their payment info. A big requirement was to also make it accessible for gaming consoles
like the PlayStation or the X-Box because those are heavily used devices in the VR market.
This made a website the only reasonable choice for creating a management tool for our
services. Time was additionally a major concern since the tool had extensive requirements
and was planned to be created by only one developer. Due to the extensive knowledge and
prior experience in web development, it was the preferred way for creating the tool in the
planned period.

Liebmann 157 / 244

Chapter 7. Web Application VIPER

7.2 Design

Design is an important part for a website. The structure has to be thought through carefully
to ensure every part is align independently of the screen resolution. VIPER also has very
specific requirements, since it targets two different audiences. On one hand the clients and
on the other hand the organizations.

7.2.1 Material Design

“Material Design is a visual language that synthesizes the classic principles of good design
with the innovation of technology and science.”[91]

As quoted above by Google, they created a way to construct a good design for even highly
technical applications. This visual language was invented by Google in 2014 under the code-
name "Quantum Paper". They tried to establish a common ground for all their application so
that they would have a unique touch in every single one of their applications. Due to this, it
would be possible for every user to immediately identify that this website is made by Google.
Material Design is conceptualized, to provide a unified resource for all types of devices like
smartphones, tablets, laptops or desktop PCs.
The nameMaterial Design comes from ametaphor. TheMaterial is designed to create a digital
fabric in which the material responds naturally to the users actions. It is inspired by paper
and ink to make it look more natural. This makes it more tactile and more connected with
sense and touch. The main difference to real paper is, that it can be split, rearranged and
moved when needed. This is primarily used to create responsive and screen independent
designs. Through techniques like transitions, padding, depth or shadows it gets a way more
natural feeling for the users and behaves like the user would expect it to. This creates a very
unique, easy and at the same time natural flow.
To give the user visual hints on what he can do, shadows, edges, and dimensions are used. By
providing each object with familiar tactile features, the user quickly gets cues on how to use
this object. For example to show, that a Floating Action Button (FAB) is static throughout
the pages, it gets placed independent from the current layout and a depth effect through
a shadow, to show that it is floating above the current page and does not get changed. An
example of a FAB can be found in Figure 7.1. Through these kinds of visual cues, the user
instantly knows what which part of the application is doing.

Figure 7.1: Example of a FAB button

To even further improve the meaning of the design, animations are added. While animations
do not interrupt the user experience, they strengthen the natural feeling the user has as the
animations mimic nature. Additional motion cascades from touch points and visual feedback
really help to connect the user even more. A good example of motion cascades would be

158 / 244 Liebmann

VIPER Chapter 7. Web Application

ripples. These are used to give the user feedback that he has touched an object. They can also
identify where the user has touched the object. In the Figure 7.2 it starts a circle, which is
propagating outwards at the point, where the user clicked the object. It is represented by the
slightly transparent blue circle.

Figure 7.2: Example of ripples in a container

Material Design also has a lot of advantages compared to other commonly used designs like
Flat-Design or Skeuomorphism. First of all, due to the fact, that this design concept was
created by Google, there is clear guidance for developing Android, web and IOS apps. This fact
also removes the guesswork when designing apps. So a unique design throughout all created
applications could be achieved and all development steps, which are sensitive to errors, can
be omitted. Material Design also brings a lot of animations into the app. It provides many
in-built animations, which helps to cut development time and also removes troubles with
animating.

7.2.2 Colors, Fonts and Icons

The color-scheme of a website is one of the most unique selling point. It leaves a permanent
impression on the user so that these colors will always be associated with the website. The
color choice is one of the most powerful tools in design. They can be used to attract attention,
express meaning and earn a customers loyalty. Good color choices take careful planning to
optimally influence the clients, alongside the layout and the many information the website
has to offer. Colors help us to store and process the information, at which we are currently
looking, more easily. This effect is essential when you want to increase brand recognition
and help users to remember your service.

Deciding on colors for VIPER
After multiple color suggestions, the team decided to use teal as the primary color. Since
teal is a mix of the colors blue and green, it represents the feelings and suggestions of both
colors. Blue stands for trust, security, and calmness. It is important to trigger these feelings
in the customers to show them that our platform is trustworthy and that we are handling
their sensitive data with care. The color green on the other hand stands for excitement and

Liebmann 159 / 244

Chapter 7. Web Application VIPER

nature. Excitement is an equally important feeling to excite the users when they are using
VIPERs services, to bind them even more and enhance loyalty. The nature aspect was also a
perfect match for our logo, the snakehead, and our project name, VIPER. The secondary or
accent color is pink. It was chosen since it is a little used color on the web. This is essential so
we can create a uniquely identifiable web service and are deeply remembered by any customer.
Furthermore pink is a refreshing color, which allows us to create a lightweight experience
with maximized usability. The last color which was essential for our conceptualization of the
material design is the warn color. Since it is normally defined and should not be changed, we
chose a standardized deep orange. Despite the fact, that we already had every necessary color
for the Material Design, the team decided to add 2 more colors to the palette (Figure 7.3). Two
slight variants of our secondary and warn colors were chosen. From this palette, we derived
every design and layout for all our applications.[94][95][96]

Figure 7.3: Color palette of VIPER

Material.io Color Tool
Googles website material.io provides many tools to create designs. One of them is called the
color tool[92]. In this tool, the primary and secondary colors are entered and the tool gives
you a general idea of how the designs will look like. Much more important is, that this tool
also shows you how to use text on these colors and shows you a lighter and darker version of
the provided colors. For example, if teal is entered as the primary color, it says that white
is only ok if you use it in a large text because the text gets unreadable if it is too small. The
example is contained in Figure 7.4. The size of the texts are defined by Google as follows:
Large text is defined as 14 point (typically 18.66px) and bold or larger, or 18 point (typically
24px) or larger. Normal text is below 18 points or below 14 points and bold.

160 / 244 Liebmann

VIPER Chapter 7. Web Application

Figure 7.4: Colors in theMaterial.io Color Tool[67]

Liebmann 161 / 244

Chapter 7. Web Application VIPER

Typography and Iconography
In the designs, two main fonts were used. The first one is Lato and the second one is Roboto.
Both are sans serif fonts, which means, that they do not have any extra strokes at the end of
the main vertical and horizontal lines. Mostly these extra strokes are subtle but some are
also clear and very pronounced. An example of a serif font can be found in Figure 7.5 and an
example for a sans serif font can be found in Figure 7.6. Sans serif fonts are easier to read in
web applications. Due to their almost uniform stroke width, the font stays readable when
the resolution of the screen is reduced or the font size gets smaller. Whereas serif fonts are
better when the user has to read large blocks of text since the serifs keep the eye in the line
and help to stay focused.

Figure 7.5: Merriweather Font - Serif

Figure 7.6: Roboto Font - Sans Serif

To further increase the users experience on our applications, we used icons to help interpret
the content we provide. This is because our brains are used to, and better trained to attain
knowledge about images rather than texts or numbers. Icons help the users to quickly find the
tab, content or information they are looking for and therefore greatly increase the usability
and induce a natural flow into the users experience. Some icons like the ’I’ for information,
the house for a home button or the shopping cart for checkout are universally understandable
images (Figure 7.7). So every user independent from culture or language is able to understand
the proper meaning of this icon. This universality is great to minimize the information, which
the users have to process to accomplish their specific goals.

Figure 7.7: Information, Home, Shopping Cart Icons

7.3 Technologies and Frameworks

To successfully create a website, a lot of different technologies are needed to accomplish the
goal. Depending on the needs and goals of the website, there are multiple factors to consider
and compare to decide what is needed. First of all, the main category are the controllers and

162 / 244 Liebmann

VIPER Chapter 7. Web Application

services, which help to create the logic and interactions of the website. They provide the
main logic of the application and manage everything from displaying dynamic information
to animating content or retrieving data from an API. Without any controllers and services,
the website could just display static content and would be very pale. This makes them an
essential part and therefore the right framework has to be chosen wisely.

7.3.0.1 Framework Comparison

There are many frameworks, libraries, and design principles, which help in creating web
applications. Since there is so much to choose from, the selection should only be done of
a detailed comparison of the main options. The goal was explicit from the start. The main
management tool of VIPER should be a single page web application. This narrowed the
selection down to three main ways of creating the application. The first one would be to
write the complete page from scratch in native JS and the other two would be different JS
frameworks called React and Angular. Every option has its advantages and disadvantages
and therefore they have to be extensively compared and checked with the requirements of
the project.

Native JavaScript
The first and most obvious reason on why to use native JS is performance. Since it is not
dependant on any libraries or other unnecessary code it can compute most things way faster.
This might be a good reason to use native JS, but the performance by far is not the biggest
problem, it is keeping the UI in sync with the internal structure of your application. To
compare native JS to the mentioned frameworks a small application which just creates a
simple list of email addresses, the user provides, will be used. This example can be found in
Figure 7.8.

Figure 7.8: Snippet to compare frameworks

If one would try to maintain the example and just wants to render the list of items one would
have to write it like in Listing 7.1.

1 const items = [
2 'alexander.strasser@viperpayment.com',
3 'michael.ebenstein@viperpayment.com'
4];
5 const emailList = document.getElementById('emailList ');
6 const ul = emailList.querySelector('ul');
7 for (let i = 0; i < items.length; i++){
8 const email = items[i];

Liebmann 163 / 244

Chapter 7. Web Application VIPER

9 const li = document.createElement('li');
10 const span = document.createElement('span');
11 const del = document.createElement('a');
12 span.innerText = email;
13 del.innerText = 'delete ';
14 del.setAttribute('data -delete -email', email);
15 li.appendChild(del)
16 li.appendChild(span)
17 ul.appendChild(li)
18 }

Listing 7.1: JavaScript example to render a simple list

Listing 7.1 shows how complicated it is to just render a simple list of items onto the UI. To now
implement the functionality to create and delete single items it would be very complex to
maintain the state of the UI every time an event occurs. Another problem with this approach
is, that the code is fragile. In the case that another source of information, like an external
server, is needed and an update occurs every 5 seconds. Every single item has to be compared
to existing ones and the UI has to be updated at the same time, a significant performance
dropout would emerge. In our case, when maintaining sensitive information like credit cards
or pay pal accounts, it would under no circumstance be acceptable to have an UI which is out
of sync with the information our application has. All these reasons make using native JS very
unpractical and not applicable to our problem.

React
React is mainly a library but can also be used as a framework. It was created by Facebook in
2013 and gets maintained by Facebook, Instagram, and their community. The background of
this framework was to create a dynamic UI with high performance, to enable users to use the
Facebook chat and simultaneously receive news feed updates.
React uses a technology called Virtual Document Object Model (DOM). The structure of the
DOM is explained in the subsection 7.5.1. With Virtual DOM an abstract copy of the Real
DOM is created in memory so that every change is only created in memory until the UI gets
updated. This abstraction layer makes updates fast and reliable and allows to build a highly
dynamic UI. Due to the fact, that React was created by Facebook, a lot of their components
can be reused to create your own applications. This takes away a lot of development time.
Also because of Facebook it is open-source and gets constantly developed further and is open
for the community.
“In case you didn’t notice we’re driving a car here with two flat tyres, the hood just flew up in
front of the windshield, and we have no clue what’s going on anymore!”[80]
This quote by Michael Jackson and Ryan Florence, perfectly describes the development of
React. Due to the swift development of React the environment changes frequently and rapidly.
Developers have to regularly relearn the new ways of developing with React, which can be
a hugh drawback. Furthermore, due to the fast development, the documentation is poor.
Things often change and that makes it hard to precisely document the whole ecosystem. For
example tools like Redux and Reflux should help developers to develop apps faster but in the
and most developers struggle to integrate them into their apps. The poor documentation can
lead to massive set backs in the development process.

164 / 244 Liebmann

VIPER Chapter 7. Web Application

To use React one has to learn JSX. It combines HTML with JS to help protect the code from
injections, which is a huge advantage. Though most developers complain that JSX is a big
disadvantage. It has a very steep learning curve and it needs a lot of time to get into the
complexity of JSX. This again consumes a lot of time.
All these facts also make React a bad choice as the controller of VIPER.

7.3.0.2 Angular

Angular is another front-end framework, which was created by Google LLC. in 2016. It is the
chosen framework for the website of VIPER. Angular helps to build interactive and dynamic
single page application. It has easy ways to handle RESTful APIs and create HTML templates.
Due to its big support through Google, it is always up-to-date and according to them it is
under Long-Term Support (LTS). Angular also uses Typescript (subsubsection 7.3.0.3), which
is another huge advantage.
The UI of Angular is defined by HTML as in any other website. All the logic is in separate
classes and therefore independent of the websites structure. This helps when developing big
applications since one does not have to make the decision on what has to be loaded first. After
everything gets defined in Angular, the framework makes all the decision and optimizes the
load time. This is essential since according to Amazon, every 100-millisecond improvement
in page loading speed led to a 1% increase in revenue.[7]
Angular also has a modular structure. It organizes its code into buckets or modules. Those
modules can be components, directives, pipes or services. This layer helps to organize the
code and makes it easy to reuse chunks of code. Through these modules, Angular knows
what is necessary to display the current page and can, therefore, lazy load the modules. Lazy
loading is a technique to only load what is necessary and loads the rest on demand or in the
background. Modules also help when developing in a team or just updating the application,
since they can be exchanged without changing any other code of the application.
Amajor concern for the website was the communication to the back end API. Angular provides
an very easy to use HTTP client. This made it effortless to develop the communication to the
API and reduced the development time drastically.
Angular also provides an animation tool which makes it easy to create high-performance
and complex animation timelines. Since animations make a website look very natural and
interactive it is important that easy access to animations is provided. Most of the time an-
imating takes up a large chunk of the development time and is therefore often omitted by
many developers but with Angular, it is very intuitive and quick.
The framework is also very concerned about accessibility. Therefore they made it easy to
create Accessible Rich Internet Applications (ARIA) enabled components and guides, devel-
opers, to create accessible applications. It also provides a built-in A11Y testing infrastructure.
A11Y is a community-driven project to make web accessibility easier. They provide a lot of in-
formation on how to create accessible applications and Angular follows all these guidelines.[1]

Furthermore Angular provides the Angular-CLI. This tool helps to generate Angular projects,
which are already pre-configured and can be used to start developing an Angular applica-
tion. It also can generate the previously mentioned modules, so that they always follow best
practices and also automatically creates tests for these modules. During the development,
the Angular-CLI helps with linting and serving the app so that it automatically refreshes the
page in the browser to immediately show the code changes live. Lastly, it provides a lot of

Liebmann 165 / 244

Chapter 7. Web Application VIPER

commands and tools to run extensive tests against the application.[9]

7.3.0.3 Typescript

TypeScript (TS) is an open-source object-oriented programming language, which gets devel-
oped and maintained by Microsoft. It is a superset of JS and it primarily adds static typing
to the language, but it also adds classes and interfaces. All these additions help the many
Integrated Development Environment (IDE)s to verify the code and prevent a lot of common
mistakes. Through the static typing, for example, the IDE is able to recognize type errors
during compiling and is, therefore, able to prevent runtime errors. TS can be used to develop
both for client-side and server-side applications and is designed to create large applications.
It transcompiles the TS code to JS code, since no browser can interprete TS code. Transcom-
piling is the process of translating one source code to the source code of another language.
TS also helps to reduce the code. Since it is a wrapper for JS it has many helper classes and
some code bits can, therefore, be reduced and be reused. Also through all the addition, the
code gets easier to read, to maintain and to understand. This helps to cut the code because
code bits are not rewritten when they can not be found in the overflow of unreadable code.

1 // TypeScript code
2 class Snake {
3 private name: string;
4 constructor (private name: string) {
5 this.name = name;
6 }
7 introduce () {
8 return "Hello , I'm a" + this.name;
9 }
10 }
11

12 // JavaScript code
13 var Snake = (function () {
14 function Snake(name) {
15 this.name = name;
16 }
17 Snake.prototype.introduce = function () {
18 return "Hello , I'm a" + this.name;
19 };
20 return Snake;
21 })();

Listing 7.2: Comparison of TypeScript classes to JavaScript classes

As one can see in Listing 7.2, the code of TS in contrast to JS follows a more standardized
pattern of object-oriented programming languages. It defines class properties inside the
class, whereas javascript only assigns the variable inside the constructor function. This can
easily lead to properties that are forgotten, overseen or even misused. Also, the circumstance,
that one has to work with the prototype of an object to add functions, makes the code very
complex and unreadable. Furthermore, through the support of modules, it is very easy to

166 / 244 Liebmann

VIPER Chapter 7. Web Application

split the code into multiple files and make the code effortless to organize. This is an essential
feature when building complex and voluminous applications. Since the compiler translates
TS to JS, it can perform many code optimizations and speed it up, it also can follow best
practices to create optimal code performance.

7.3.0.4 Libraries

For the implementation of the website, a number of libraries were essential. These libraries
are further explained in this section.
The first library is ngx-braintree and it is used to add the payment options via Braintree. This
was a crucial part of the project because it was the only library that allowed us to accomplish
one of our main goal (the payments). A more detailed usage and the problems which arose
when using it can be found in subsubsection 7.4.2.2.[113]
Next,Moment.js is an extremely powerful tool when working with times or dates. It can parse,
validate, manipulate and display dates and times in JS. This library was essential to parse,
analyze, manipulate and display all the statistics of the page.[101]
ng2-charts is an Angular wrapper for the Chart.js library. Chart.js is a simple and very flexible
library to create all kinds of charts. It was essential to display all the statistics on the page. A
more detailed explanation can be found in Figure 7.4.1.2.[112]
The library angular2-image-upload implemented a component which provides an interface to
upload images to the server. It was used to enable the image uploads for profile and product
pictures. The interface of this component is highly customizable and can show a preview of
the uploaded picture.[11]
To parse the JWT, the angular-jwt library was used. JWT is a token, that stores all user
information inside an object and is used to authenticate the users requests on the server. It
can check if a token is already expired and extract the data from the token.[10]
The most essential library was rxjs. RxJS stands for Reactive Extensions for JavaScript. It
is used to optimize the utilization of callbacks and asynchronous tasks. In every part of
the application, where no immediate response was expected, RxJS was used to handle the
callbacks. It also enabled the functionality to send HTTP request in one part of the application
and evaluate the data in another part. RxJS works by providing an observable in one part,
which can then be resolved in another part of the application. This made the code more
readable and easier to handle.[132]

7.4 Architecture

In this section, the whole architecture of the application is explained. Particularly the setup
of the website, the essential processes and the layout gets explained.

7.4.1 Interface

The interface of the website is split into three separate parts. The first one is the front page,
which is just used to display information about the product and explain how it works for a
customer and for an organization.

Liebmann 167 / 244

Chapter 7. Web Application VIPER

Figure 7.9: Image of the frontpage

The second part is the register/login form and the third part is the main application.

7.4.1.1 Register and Login Form

This part was again split into the developer and the client section. The concept was to create
a small window in front of a background image with the login or register details. Above the
form, the logo and the project name was displayed, to identify that the user is on the VIPER
page as seen in Figure 7.10.

Login Form
This page is identical for both clients and developers, the only thing that changes is the
heading. For developers it says ’Developer Login’ and for clients, it says ’Client Login’. As one
can see in the Figure 7.10, it automatically validates the inputs, so the user can only log in
when all inputs are provided. When the user clicks the login button, the component method
startLoginProcess is called. The code for the login process can be found in Listing 7.3.

1 startLoginProcess(values , valid) {
2 if (valid) {
3 this.userManager.loginUser(values.email , values.password ,

values.remember , 'ROLE_DEV ').subscribe (() => {
4 this.router.navigateByUrl('developer/dashboard ');
5 }, error => {
6 this.snackBar.open(error.message , 'OK', {duration:

5000});
7 });
8 }
9 }

Listing 7.3: Code for the login process

168 / 244 Liebmann

VIPER Chapter 7. Web Application

Figure 7.10: Image of the login page

This method first of all checks if the input the user provided is valid. Then the userManager
is called and tries to login the user. The userManager is explained in subsubsection 7.4.2.1.
The loginUser method of the userManager takes the email, password, if the user wants to
save his email address and the role of the user. For the client, the role is ROLE_USER and for
the developer, it us ROLE_DEV. This role is used to determine if the user has logged in on
the right page. For example, if a developer tries to log in on the user page, he gets an error,
which states that he is not authorized to access this page. If it was successful, the user gets
forwarded to either the developer or the client page. If the request was denied, the credentials
were wrong or the server could not be reached, a snack bar appears and states the error. The
snack bar helps to keep the design of the page clean but still get the attention of the user and
inform him, that an error occurred. This type of notification was used all over the application
to notify the user.

Liebmann 169 / 244

Chapter 7. Web Application VIPER

Figure 7.11: Snackbar to notify user

Register Form
The registration form for the client was a simple form with the name, username, email, and
password of the client. After pressing the Create Account button, the same process as the one
for the login form is carried out (subsubsection 7.4.1.1). The only thing that changes is the
method of the user manager that gets called. Instead of loginUser it is registerClient.

Figure 7.12: Client register form

For the organizations, the registration form was a lot more complex. Since an organization
has to provide more information to register themselves, it was not possible to fit all input
fields onto one page. The concept then was to create a stepper to lead the user through
all the different steps and makes a seamless transition between the different categories of
information. This helps to not repel the user due to the large amount of information he has
to provide.

170 / 244 Liebmann

VIPER Chapter 7. Web Application

Figure 7.13: Developer register - Organization
setup step

Figure 7.14: Developer register - finish step

To realize the stepper a register component and for each category, another component was
created. The register component handles the transition from one category to the next.
Furthermore, it processes the provided information and registers the organization. It also
shows the progress through the icons on the top of the window. One icon and one color per
category were picked to create the progress display. If the step is active the icon gets outlined
with the color (Figure 7.13) and if the step is finished, the icon gets filled with the color
(Figure 7.14). To track the step the organization is currently at, a variable called flowPoint was
introduced. This variable determines, which parts of the stepper have to be displayed and
further changes the progress display. To change the design of the progress display, 2 classes
for every step were defined. The first one is the active class and the second one is the success
class. For the second step these classes would be .activeSecond and .successSecond. The layout
of these classes can be found in Listing 7.4. These 8 classes are then used to determine the
current design of the progress.

1 %second -outline {
2 border -color: $second -color;
3 color: $second -color;
4 }
5 %second -fill {
6 border -color: $second -color;
7 color: #eeeeee;
8 background -color: $second -color;
9 }
10 .activeSecond > {
11 .icon:nth -child (2) {
12 @extend %second -outline
13 > mat -icon {
14 @extend %second -outline
15 }
16 }
17 .lineToNext:nth -child (1)::after {

Liebmann 171 / 244

Chapter 7. Web Application VIPER

18 background -image: linear -gradient(to right , $first -
color , $second -color);

19 }
20 }
21 .successSecond > {
22 .icon:nth -child (2) {
23 @extend %second -fill
24 > mat -icon {
25 @extend %second -fill
26 }
27 }
28 .lineToNext:nth -child (1)::after {
29 @extend %second -fill
30 }
31 }

Listing 7.4: SCSS classes for the progress display

The .active class outlines the icon with the specific color. This is achieved by changing the
color and the border-color properties, which switch the icon color and adjusts the color of
the circle. The .success class fills the circle around the icon, makes the icon grey and colors
the circle. These classes and variables are created for every component. After this has been
implemented, the flowPoint decides, which classes are currently active and the progress
display adjusts itself.
Every step has one input and two outputs and one setting. These Input/Output (IO) parts are
used to communicate with the component. The setting *ngIf is there to determine if the step
should be displayed. In the example of Listing 7.5, the developer-register-organisation-info
component is only visible when the flowPoint is currently at 1. The (action) output is used for
navigation. If the user pressesNext it outputs 1 and increases the flowPoint. If the user presses
Back it outputs -1 and decreases the flowPoint. These changes of the flowPoint automatically
update the displayed step. The input [validateInfo] is used to trigger the validation of all
steps. If the validate variable is set to true, all components validate their data and output it
via the (validated) output. This then adds the information to an object and tells the register
component that it has successfully validated all data. If every component has responded with
the validated data, the user gets registered with the same process as the user.

1 <app -developer -register -organisation -info
2 *ngIf="flowPoint ===1"
3 (action)="navigate($event)"
4 [validateInfo]="validate"
5 (validated)="addInfo($event ,'company ')">
6 </app -developer -register -organisation -info>

Listing 7.5: Example of a step component call

172 / 244 Liebmann

VIPER Chapter 7. Web Application

7.4.1.2 Developer Pages

Themain developer page consists of 5 pages. The dashboard, statistics, application, developer-
accounts, and payment-accounts page. The main layout of the page consists out of three
parts. The first part is the top bar. It is used to display the account information and the profile
picture. When clicked a small menu is opened. It can be found in Figure 7.15 at the top right.
This small menu provides some quick links for the user. The second part is the navigation bar
on the left. This shows all the pages of the application, that the current user can access. It
can be either viewed in the text view (Figure 7.20) or the icon view (Figure 7.21). The view
can be changed via the collapse button at the bottom. This setting is only for user preference
and to provide a clearer overview of the page. The third part is the main window. Here all the
different pages are displayed. How this works is explained in subsection 7.4.3.
Due to time issues, the statistics endpoints are not yet created and are planned for the future.
At the moment, only mock data is used.

Dashboard
The dashboard shows the statistics for the current month. It shows the revenue chart of the
sum of all applications and a chart of the top 5 applications with the most revenue. How
these charts work are described in paragraph 7.4.1.2 Furthermore it shows all applications
and link to their specific statistics page.

Figure 7.15: Developer Dashboard

Statistics
The statistics page is a tool for the developers to extract information about their profit and
what their best selling products are. Like the dashboard, it shows the total revenue, the top 5
profitable apps and the links to the statistics page of the specific applications. The statistics
page of the application looks exactly like the default statistics page except it shows all the
products of the application instead of the applications.
To display all the charts, the ng2-charts library was used. The first thing to do to show a chart
is to create a canvas element with the configuration needed by the library. An example canvas
can be found in Listing 7.6.

Liebmann 173 / 244

Chapter 7. Web Application VIPER

1 <canvas
2 baseChart
3 [datasets]="revenueChartData"
4 [options]="revenueChartOptions"
5 [chartType]="'line '">
6 </canvas >

Listing 7.6: Example of a canvas for ng2-charts

The baseChart attribute tells the library, that this canvas is used for a chart. The [datasets]
attribute feeds the statistics data to the library as an array of datasets. Out of these datasets,
the library generates the chart. To configure the chart, a config object is fed into the [options]
attribute. An example configuration can be found in Listing 7.7. The last attribute [chartType]
defines what kind of chart it is. On the website, only two types were used. The first one was
line for the revenue chart and the second one was pie for the top 5 chart.

1 {
2 scaleShowVerticalLines: false ,
3 responsive: true ,
4 maintainAspectRatio: false ,
5 scales: {
6 xAxes: [{
7 type: 'time',
8 distribution: 'linear ',
9 time: {
10 min: moment('01 -01 -2018'),
11 max: moment('12 -31 -2018'),
12 unit: detail
13 }
14 }],
15 },
16 tooltips: {
17 callbacks: {
18 title: tooltipItems => {
19 return moment(tooltipItems.xLabel).format(

dateFormat);},
20 label: tooltipItems => {
21 return tooltipItems.yLabel + ' Euro';}
22 }
23 }
24 }

Listing 7.7: Example configuration for ng2-charts

To now feed the data into the chart, the statistics provider service was used. This service was
created to gather the data from the VIPER servers and process them to be then displayed.

174 / 244 Liebmann

VIPER Chapter 7. Web Application

Figure 7.16: Developer statistics page

Applications
To create the applications, which are then displayed in the VR- and AR-apps, the application
page was created. Here the developer can add all of his applications. When the +-FAB is
pressed a dialog (Figure 7.17) opens. Here the developer can enter the necessary information
about the application and upload an image. After clicking the Create button, another page
opens (Figure 7.19). This page allows the developer to make changes to the applications and
create products for the application. When the user presses the Add Product button, another
dialog appears, which is used to create a product (Figure 7.18).

Figure 7.17: Create application dialog Figure 7.18: Create product dialog

The individual products are displayed as cards. This card design makes the application
responsive. When there is not enough space in one row, the card simple gets placed in the
next row.

Liebmann 175 / 244

Chapter 7. Web Application VIPER

Developer Accounts
The accounts page is used to manage the developer accounts of an organization (Figure 7.21).
In future changes, all developers will have individual rights to manage applications. On the
page all developers get displayed with their rank (admin- or user-icon), full name and email
address. Everything of an account can be changed and the developer can be deleted, through
the more options button on the right.

Figure 7.19: Product page

176 / 244 Liebmann

VIPER Chapter 7. Web Application

Figure 7.20: Developer applications page

Payment Accounts
The last page for the developer, is the payment accounts page (Figure 7.22). This page is for
the organization to add their Braintree account to our services. This account is then used
to transfer the money of the bought items to the organization. If the user clicks the +-FAB,
a simple dialog is opened and the user can input the information for the Braintree account.
After successfully creating the account it is immediately displayed on the page.

Figure 7.21: Developer accounts page Figure 7.22: Developer payment accounts page

Liebmann 177 / 244

Chapter 7. Web Application VIPER

7.4.2 Services

The services are an essential part of the application since they are implementing the main
logic. How to implement all services with Angular is explained in this section.

7.4.2.1 User Manager

The userManager service was important since it manages the sessions and the user login and
registration. When a user uses a register or login form and presses the according button, the
userManager starts the process of registering/logging in the user.

1 loginUser(identification: string , password: string , remember:
boolean , role: string) {

2 const data = {'identification ': identification , 'password '
: password };

3 return Observable.create(observer => {
4 this.httpClient.post(this.config.getLoginPath (), data ,

{observe: 'response '})
5 .subscribe(resp => {
6 const token = resp.headers.get('Authorization ');
7 // [...] - simple error handling
8 this.startLoginProcess(token , observer , role);
9 }, error => observer.error(error.error));
10 });
11 }

Listing 7.8: User manger login method

Listing 7.8 is the code for the login method. It is used to log in both clients and developers.
First of all, it builds a data object from the provided information. Then it creates an observ-
able, that can be resolved in another part of the application. To finish the observable, the
application first tries to login the user on our servers and then saves the data inside the appli-
cation. If everything was successful, the observable is resolved. If an error occurred, the error
is returned and an error message is displayed. The request is sent via Angulars HttpClient. To
send the request the HttpClient needs the URL that is provided by the config service, the data,
and some options. The config service is a simple server that supplies all HTTP request with
the right URL. In this example the observe response option is set. This enables the HttpClient
to read the headers of the response and therefore the ability to extract the JWT. When the
request was successful, the application starts the login process. This process is the same
for registering and logging in. It simply saves the JWT and gathers information about the
account.
After the token has been saved, the application is able to tell if a user is currently logged
in. The method for checking if the user is logged in can be found in Listing 7.9. It checks
if the token is expired with the help of the jwtHelper class. If the token is expired, the user
gets logged out and the method returns false to signify that no user is currently logged in.
Otherwise, the method returns true and therefore says that a user is currently logged in.

178 / 244 Liebmann

VIPER Chapter 7. Web Application

1 isUserLoggedIn () {
2 const token = this.getToken ();
3 if (this.jwtHelper.isTokenExpired(token)) {
4 this.removeToken ();
5 return false;
6 }
7 return true;
8 }

Listing 7.9: User manager isUserLoggedInmethod

7.4.2.2 Payment Service Integration with Braintree

As described in section 6.7, our payment provider of choice is Braintree. This constrains us
to use their provided API to communicate with their services. This means that the website
has to integrate its Javascript v3 SDK. Normally this library is easy to integrate since it is just
a script, which has to be loaded. However, Angular is written in TS and therefore needs all
it is libraries also in TS or with a type definition for every method. Node Package Manager
(NPM) provides a Braintree package called Braintree-web[26], which integrates all the library
calls into an easy to use package, but it is not written in TS and is therefore unusable for
us. The package can be found here[26]. To try to use this package although it is not TS, we
tried to change the configuration of Angulars TS compiler to ignore everything that has to
do with the Braintree package. But still, the compiler refused to integrate this JS library and
consequently, another solution was needed.

DefinitelyTyped
DefinitelyTyped is a repository for high quality TS type definitions. More information about
DefinitelyTyped can be found on their website[39]. Type definitions are files for the TS
compiler that identify the types of every variable and method of a JS library so it can run
type checks with the library. DefinitelyTyped provides many type definitions for optional
Angular components, hence they are well known and can be trusted to always have up-to-date
definitions. They also maintain type definitions for the braintree-web[163] package. After
the braintree-web package and the type definitions for it had been installed, another problem
occurred. The Braintree SDK also heavily relies on third-party libraries. For example, to
integrate PayPal payments into the application, the library created by PayPal is needed. The
problem which arises now is that there are no type definitions for the PayPal library, which
again causes the compiler to throw exceptions. This problemmakes the approach to integrate
the type definitions for the braintree-web package again unusable.

Braintree Dropin UI
The Braintree Dropin UI is a component created by Braintree. More information about the
Drop-in UI can be found in their documentation[25]. This component gives the developer a
fully working flow for every payment option he wants to integrate. The only drawback with
this approach is that you can not customize it. The design, the flow, and the requests are
unmodifiable. This makes the component a hassle to integrate into an existing application

Liebmann 179 / 244

Chapter 7. Web Application VIPER

with predefined designs and already existing flows. Nevertheless, it is the only way at the
time to integrate the Braintree service into the website. NPM again provides a package called
ngx-braintree. This package has type definitions and is also optimized for Angular because
the package has been componentized. Therefore it is effortless to integrate into an existing
Angular application. This package can be found on npm[113]. To use this package, it has to
be installed via NPM, the command is shown in Listing 7.10.

1 npm install ngx -braintree --save

Listing 7.10: ngx-braintree installation command

After the successful installation, the component has to be called in the HTML file and finally
has to be configured through the attributes of the tag. How it is called and configured can be
found in Listing 7.11

1 <ngx -braintree
2 [getClientToken]="getClientToken"
3 [createPurchase]="createNonce"
4 [enablePaypalVault]="true"
5 (paymentStatus)="success ()"
6 (dropinLoaded)="onDropinLoaded ()">

Listing 7.11: Configuration of the ngx-braintree tag

This setup is enough to integrate the Braintree Drop-in UI component as seen in Figure 7.23.
However, it does not do anything until all the required methods are actually implemented.
The first method, which gets passed to the [getClientToken] attribute, queries the client token
from our servers. This happens through a simple HTTP request to our infrastructure, which
then returns the client token. The token is mandatory for Braintree so it knows, which user is
adding a new payment method. The createPurchase attribute requires a method that sends
a request to the server and carries out the purchase. After that, it returns the purchase if it
was successful. Since we do not want the user to purchase something, but rather save his
payment account, we change the createPurchase to fit our objectives. The new purpose of
this method is to retrieve the nonce, which is then used to identify the newly created account.
Additionally, the interface changes and shows a form, where the user can enter a name, an
authentication method and the pin/pattern for this account.

180 / 244 Liebmann

VIPER Chapter 7. Web Application

Figure 7.23: Braintree Drop-in UI

Figure 7.24: Create Payment Form

Liebmann 181 / 244

Chapter 7. Web Application VIPER

If the user now presses the Create Account button, the application sends a HTTP request to
the server and tries to save the reference to the payment account in our database. Was this
request successful, the createPurchase attribute gets resolved via a success message and the
payment status is set to successful. However, should the request fail, the Braintree Drop-in
UI gets loaded again and tries the flow from the beginning. The [enablePaypalVault] attribute
is a configuration point to decide if Braintree should show an option for the user to enter his
PayPal account.
When the payment status gets set to successful, the component automatically executes
method that was assigned to the attribute (paymentStatus). This method then closes the
dialog and adds the new payment account to the UI.
The last attribute called (dropinLoaded) executes the provided method after all necessary
scripts have been loaded, Braintree has identified the client token and the HTML tree has been
built. It is important to catch this event, since the Drop-in UI always shows the previously
saved accounts, but this is unnecessary for our application since it is only used to create a
new account. At startup Braintree provides a button that says "Choose another way to pay".
So before the user can enter anything, the application automatically clicks this button and
therefore skips the step where the user sees his saved accounts.

7.4.3 Routing

The routing module, which is beeing directly supplied by Angular, enables navigation from
one view to another view without refreshing the page. To enable routing inside an Angular
application, theRouterModule and theRoutes interface have to be imported, like in Listing 7.12.

1 import {RouterModule , Routes} from '@angular/router ';

Listing 7.12: Importing the router module

First, a Routes object has to be created, which then gets imported in the AppModule of the
application via the RouterModule. For example a Routes object could look like Listing 7.13.

1 const appRoutes: Routes = [
2 {path: '', component: FrontPageComponent},
3 {path: '**', component: Error404PageComponent}
4];
5

6 @NgModule ({
7 imports: [
8 RouterModule.forRoot(appRoutes)
9],
10 [....]
11 })
12 export class AppModule {
13 }

Listing 7.13: Example routes configuration

The routes get defined as simple objects. The first parameter is the path, which has to be
called in the browser so that the component, which is the second parameter, gets displayed.

182 / 244 Liebmann

VIPER Chapter 7. Web Application

The path can also be supplied with data. That functionality will later be used to determine
the current page the user is looking at. In the example Listing 7.13 we have two routes. The
first route with the empty path displays our front page if no URL path gets called. The second
route has two asterisks in the path. This string stands for a path wildcard. This means that
every URL, which is not defined in the RouterModule, will display the Error 404 Page. Since the
AppModule can get quite large and unreadable when the application grows in complexity, the
routes got outsourced into their ownmodule. It is the exact same setup, but the RouterModule
gets exported in the newmodule, so it then can be imported in the AppModule. How to import
the RouterModule is described in Listing 7.14.

1 @NgModule ({
2 imports: [
3 RouterModule.forRoot(appRoutes)
4],
5 exports: [RouterModule],
6 })
7 export class RoutesModule {
8 }

Listing 7.14: RouterModule import in AppModule

The newly created RoutesModule gets then imported into the AppModule like mentioned
above. The Angular routing is now fully configured. However, the router does not know where
to put the routed content yet. To enable the router to display the content, a router outlet has
to be integrated into the HTML file of the app. The syntax of the router module can be found
in Listing 7.15.

1 <router -outlet ></router -outlet >

Listing 7.15: router-outlet tag

To implement a very readable URL style, children were also used inside the router. Listing 7.16
is an example of the routes of our statistics and dashboard pages for the developers.

1 const appRoutes: Routes = [{
2 path: 'developer ',
3 component: DeveloperPageComponent ,
4 children: [
5 {path: '', pathMatch: 'full', redirectTo: 'dashboard '

},
6 {path: 'dashboard ', component:

DeveloperDashboardComponent , data: {active: '
dashboard '}},

7 {path: 'statistics ', component:
DeveloperStatisticsComponent , data: {active: '
statistics '}},

8 {path: 'statistics /: appTitle ', component:
ApplicationStatisticsComponent , data: {active: '
statistics '}},

Liebmann 183 / 244

Chapter 7. Web Application VIPER

9 {path: 'statistics /: appTitle /: productTitle ', component
: ProductStatisticsComponent , data: {active: '
statistics '}}

10]
11 }];

Listing 7.16: Example of routes with child routes

When the path /developer is called the DeveloperPageComponent gets displayed. Inside this
component, a router outlet, like before, has to be added to the HTML file. The children of a
path also consist of the same parameters as all other routes. In the example Listing 7.16, there
is one route that catches an empty addition after the /developer path, which then redirects
the URL to the dashboard of the developer. Two out of the three statistics paths have a route
parameter inside of it. A route parameter is defined via a variable name and a colon in front of
it. This parameter can then be accessed inside of the application through the ActivatedRoute
module provided by Angular. The used method is shown in Listing 7.17 For this to work the
mentioned module has to be injected into the constructor to then be used.

1 constructor(private activatedRoute: ActivatedRoute , [....]) {
2 }
3

4 ngOnInit (): void {
5 this.activatedRoute.params.subscribe(params => {
6 let appTitle = params['appTitle '];
7 // Dispatch action to load the details of the app.
8 });
9 }

Listing 7.17: Example method to gather route parameters

As just explained, the main application consists of a parent and a child. The parent handles
the navigation and provides a predefined space where the different pages can be displayed.
Consequently, the child gets loaded and now can display its content. For the parent, it is
important, which page is currently beeing displayed. The information of the active child are
supplied by the router itself. Every child path has a data attribute, as seen in Listing 7.16.
Listing 7.18 shows the method, that is used to access the data. Again the ActivatedRouter
module has to be injected and then the data can be requested by the parent.

1 constructor(private activatedRoute: ActivatedRoute , [....]) {
2 }
3

4 ngOnInit () {
5 this.activatedRoute.data.subscribe(data => {
6 this.activeChild = data['active '];
7 // Dispatch action to activate the right navigation

point
8 });
9 }

184 / 244 Liebmann

VIPER Chapter 7. Web Application

Listing 7.18: Method to access route data

7.5 Testing, CI and CD

Testing is an important part of the development process. It is used to avoid commonmistakes,
but also mistakes that are no predictable during the development process. They can also
prevent errors when changing the code, for the reason that the tests would throw errors
if an essential parts of the application was changed. This leads to a more robust coding
environment.

7.5.1 Unit Testing

Jasmine
Jasmine is a testing framework for javascript. It is capable of testing any kind of Javascript
application without depending on other Javascript frameworks or a DOM. The DOM is a
tree like structure which defines the internal structure of the website. It gets created by the
browser while it reads the HTML file and interprets the tags. Those tags then get loaded
into the memory which can then be further used by Javascript to read, change or add certain
elements of the structure. This leads to a change in the UI.

Figure 7.25: Example DOM tree

Jasmine follows a Behavior Driven Development (BDD) procedure to ensure that each line
of the program is unit tested. BDD is a software development process that helps to create
tests, which are more user-focused and based on the systems behaviour. It mainly focuses on
where to start the process, what to test and what not to test and understanding why a test
failed. At its core, BDD rethinks how to approach unit and acceptance testing and how to

Liebmann 185 / 244

Chapter 7. Web Application VIPER

avoid common issues. Furthermore, Jasmine has a very clean syntax which makes it very easy
to read and maintain a large number of tests.

1 describe('CalculatorComponent ', () => {
2 it('should expect 1 to be equal to 1', function () {
3 expect (1).toEqual (1);
4 });
5 });

Listing 7.19: Example of the simple Jasmine syntax

As seen in Listing 7.19, the code is very similar to natural language. Every describe block is
equivalent to one test case and the it just describes which behaviour the test is verifying. In
this example, the CalculatorComponent gets tested to ensure, that 1 equals 1. If the Angular-
CLI is beeing used to run Jasmine, it takes care of the configuration and therefore does not
require a config file

Karma
The drawback with Jasmine alone is that after every code change, the Jasmine runner in the
browser has to be refreshed. To support multiple browsers it would be evenmore troublesome,
since every single one of them would have to be manually refreshed.
Karma helps at this point. It is not a testing framework, it just launches a HTTP server,
and starts the test runner inside the spawned browsers. Karma supports real browsers, real
devices such as phones and tablets and can even run on a terminal instance. A terminal
instance is just an environment with only text IO and without any UI. Through the broad
spectrum of support, it is easy to develop and test on multiple instances. Furthermore, Karma
automatically reruns every test after it detects that some part of the code has changed. For
our web app, we configured two browsers. The first one is Chrome and the other one is Firefox.
Both browsers are configured are configured as real and as headless. The headless part is just
for the testing in our CI environment.

1 browsers: [
2 'Chrome ', 'ChromeHeadless ',
3 'FirefoxHeadless ', 'Firefox '
4],
5 customLaunchers: {
6 ChromeHeadless: {
7 base: 'ChromeHeadless ',
8 flags: ['--no-sandbox ']
9 },
10 FirefoxHeadless: {
11 base: 'Firefox ',
12 flags: ['-headless '],
13 }
14 }

Listing 7.20: Configuration of headless browsers

186 / 244 Liebmann

VIPER Chapter 7. Web Application

Listing 7.20 is the configuration, which is needed for Karma to spawn Firefox and Chrome
and run the unit tests in them. It is also quite easy to configure real devices like an Android
browser. One just has to install the Karma plugin which is then able to launch an Android
browser.

1 npm install karma -android -device -browser -launcher --save -dev

Listing 7.21: Command to install Android support for Karma

After the successful installation of the launcher, the Android launcher has to be configured.
By adding a RealAndroidBrowser to the browsers and create another custom launcher as in
Listing 7.22, this functionality is enabled.

1 browsers: ['RealAndroidBrowser '],
2 customLaunchers: {
3 RealAndroidBrowser: {
4 base: 'AndroidDevice ',
5 deviceUuid: 'android -30015 gea6dcc910b ',
6 sdkHome: '/opt/Android/sdk',
7 deviceBrowser: 'chrome '
8 }
9 }

Listing 7.22: Configuration for a real Android browser

The deviceUuid has to be changed to the actual ID of the real device, which can be found with
the Android Debugging Bridge (ADB). The sdkHome has to be changed to the actual path
of the SDK which is installed on the local machine. The deviceBrowser can be one of three
browsers: chrome, internet or firefox. If one wished for all three, it can be configured by
creating multiple customLaunchers. After the configuration is finished, Karma automatically
starts a browser on the real device and will test it.
To now run the Jasmine tests with Karma, the Angular-CLI has to be called, which then starts
up all the necessary tools to run the tests.

1 ng test

Listing 7.23: Command to start testing

It is a very simple process and therefore Karma is very helpful when trying to test various
devices as quickly and reliably as possible.

7.5.2 End-to-End Testing - Protractor

Protractor is an end-to-end testing framework for Angular. It executes the tests just like a user
would act in a real browser. Protractor is built on top of WebDriverJS, and is therefore able to
use native events and browser dependent drivers to interact with the tested application, just
like a normal user would. Protractor is a Node.js program, which means that it is necessary
for Node.js to be installed to run any tests. It also uses Jasmine for its testing interface and
consequently uses the same style for tests like Jasmine.
Typically Protractor runs its tests on a publicly available application. However, in our case, it

Liebmann 187 / 244

Chapter 7. Web Application VIPER

is more sensible to host the application on a local instance via a Selenium Server. Selenium
is a framework for automated software tests against web applications. Protractor also comes
with webdriver-manager. This is a simple helper tool which helps with creating an instance
of a Selenium server. To now start the Selenium server, it is necessary to first update the
webdriver-manager. The Angular-CLI also has a built-in tool which handles the creation
of the Selenium server and automatically starts Protractor to run all the test against the
application.

1 webdriver -manager update
2 ng e2e

Listing 7.24: Command to start end-to-end testing

The configuration of Protractor is also straightforward. Most options are pre-configured,
when the framework gets installed. As seen with Karma, Protractor needs to know, which
Browsers it should launch and run the tests in. Also, the baseUrl which it has to call needs
to be specified. Lastly to support the already mentioned Jasmine syntax it is important to
declare it as the used framework.

1 capabilities: {
2 browserName: 'chrome ',
3 },
4 directConnect: true ,
5 baseUrl: 'http :// localhost :4200/ ',
6 framework: 'jasmine ',

Listing 7.25: Karma configuration

To support multiple Browsers, the capabilities have to be changed to multiCapabilities. That
configuration then allows Protractor to spawn multiple Browsers and run all tests in parallel.

1 multiCapabilities: [{
2 'browserName ': 'chrome '
3 }, {
4 'browserName ': 'firefox '
5 }]

Listing 7.26: Protractor multiple browser support

The baseUrl specified in this particular configuration points to the Angular development
server which gets started by the Angular-CLI when starting the end-to-end tests.

7.5.3 Continuous Integration and Continuous Deployment

For collaboration, Continuous Integration (CI) and Continous Delivery (CD) we use Gitlab
and the Gitlab testing environment.

Countinous Integration
To test the website, Node.js has to be installed. After that, the required libraries are installed
and the testing is started. This procedure worked fine with Jasmine and Karma. Anyhow, the

188 / 244 Liebmann

VIPER Chapter 7. Web Application

setup was not compatible with Protractor, since it needs a real Desktop Environment (DE) to
simulate the users actions. However, the Gitlab environment does only provide a command
line environment, which means that a DE has to be manually simulated. There is a tool called
Xvfb, which stands for "X Window Virtual Framebuffer". For a client application Xvfb looks
like a normal DE, but in reality it simulates all graphical operations in virtual memory and
does not show any output to the screen. To run Xvfb does not need a graphics adapters, screen
or input device. It just needs access to a network layer to properly work. All of this makes Xvfb
a perfect environment to execute the Protractor tests in. The problem which arose during the
configuration is that, it could not properly start in the Gitlab testing environment.
The easier solution was to use a preconfigured docker container. On the Docker Hub a user
called "trion" created a container called "ng-cli-karma", which comes with Xvfb pre-installed
an pre-configured.[162] Using this container has the advantage, that the container is always
up-to-date and working. Through using this container the process simplified a lot. Karma and
Jasmine worked normally, but Protractor did not need any special configurations or tweaks.
As soon as Protractor got started, it detected the DE and successfully executed the tests.

Continous Deployment
To deploy the website, a docker container with a nginx configuration was created. Nginx is the
webserver, which is used to serve the files for the website. More detailed information about
the deployment can be found in section 6.10. To build the website the following command
has to be executed:

1 ng build --progress false --prod

Listing 7.27: Command to build the Angular application

Listing 7.27 starts the building process. After finishing it outputs the main file for the
website and all it is compiled sources. The –progress false flag says, that the tool should not
show the current progress, since it is not needed. The –prod flag tells the Angular-CLI that it
should build the application for production mode. This has many advantages when serving
the website to the public. First of all it makes the size of the website a lot smaller through
minification, uglification and dead code elimination. During minification, the tool removes
all whitespaces and comments. This reduces the size of the application drastically. While
uglification takes place, the code gets rewritten to use short and cryptic variable and function
names. This helps to make the code unreadable and therefore protect it from unauthorized
people. Dead code elimination, as the name already suggests, removes every code bits, which
do not get used. Furthermore, it pre-compiles the Angular component templates, so the users
browser does not have to interpret everything, which would be very time consuming and the
user would experience a higher latency when viewing the page. This process is called Ahead-
of-Time Compilation. Additionally the tool concatenates all files and libraries into a few
bundles, which makes it easier to decide what has to be loaded when the page gets displayed.
Lastly Angular enables the production mode and suppresses all debug outputs. After the
building has finished. All files are loaded into the docker container, then the container gets
deployed and started.
To secure the connection between our services and the user HTTPS has to be enabled on
the nginx server. To be able to activate HTTPS a Secure Sockets Layer (SSL) certificate is
needed. This certificate proves that you are the righteous owner of the domain under which
the website is served. To always have an updated certificate we use a tool called certbot. This

Liebmann 189 / 244

Chapter 7. Web Application VIPER

tool verifies that you are the owner of the domain and creates the certificate for you.
To then enable HTTPS on nginx the config in Listing 7.28 had to be created.

1 server {
2 listen 443 ssl;
3 server_name viperpayment.com;
4 ssl_certificate /etc/letsencrypt/live/viperpayment.com

/fullchain.pem;
5 ssl_certificate_key /etc/letsencrypt/live/viperpayment.com

/privkey.pem;
6

7 [...]
8

9 location / {
10 try_files $uri $uri/ /index.html;
11 }
12 }

Listing 7.28: Command to build the Angular application

This configuration tells nginx that it should only listen to any requests, that are on port 443
and are under the domain viperpayment.com. Port 443 is the default port for HTTPS and gets
automatically called by all browsers. The ssl_certificate and ssl_certificate_key options, specify
the paths where the files from SSL certificate are located. The location option tells nginx
that everytime a file gets requested that does not exist, the index.html gets served. This is
important since Angular handles the routing on it is own and only if another component is
request, the webserver should send it back.
When the container successfully started, the website is publicly accessible through a secure
channel.

190 / 244 Liebmann

VIPER Chapter 8. Project Management

Chapter 8

Project Management

8.1 Different Project Management Models

When starting the project the team decided on a project management method to work as
efficient and define the goals as simple as possible. The available management methods can
be separated into agile and waterfall models.

8.1.1 Waterfall Model

The waterfall model has one of the most basic software development models as it is linear and
sequential.[83] Thus after finishing one step in the waterfall-model, this step gets marked as
completed and not touched again for the remaining project. Also, before being able to move
on to the next phase, the one before it needs to be completed (as visualized in Figure 8.1).

The waterfall model can be generally split into four different phases:

Requirement Analysis and Specification Phase In the first phase, the project team gath-
ers and documents the requirements of the product. This results in a document, the Software
Requirement Specification (SRS)-document, which may act as a contract between the devel-
oper and the customer.[83] The SRS is written in a natural language as it must be understood
by both the customers and the developers.

Design Phase The design phase translates the SRS into a structure suitable for designing
and programming. The process of this phase gets documented in the Software Design De-
scription (SDD)-document. It may contain technical jargon[83] as it contains the information
needed to implement the software.

Implementation and Testing Phase In the implementation and testing phase the product
gets developed and tested as defined in the SDD. The testing phase can further be split into
two parts: Unit testing, where single modules of the software are tested, and integration
and system testing, where the functionality of several processes is tested. In the example
of VIPER these tests could include testing the whole payment process. After finishing the
implementation and testing phase, the product gets shipped out to the customer.

Fuchs 191 / 244

Chapter 8. Project Management VIPER

Maintenance Phase The maintenance phase starts with the release of the software. The
main focus of this phase is to keep the product functional by correcting errors and enhance
some of its functions and capabilities.[83]

Figure 8.1: Graphic illustration of the waterfall model

8.1.2 Agile Model

The agile model mostly follows iterative and incremental practices of developing a software
or product.[89] The life cycle of agile project management (which is visualized in Figure 8.2) is
focused on being adaptive and people-based rather than predictive and process-oriented.[60]
Agile project management methods provide several smaller software releases to increase the
relationship between client and developers which leads to a very cooperative development
phase.[89]

As shown in Figure 8.2, agile project management methods are not defined into several
phases as these phases restart repeatedly. The agile model contains phases of planning,
developing, testing and releasing. These four steps are handled circularly: A feature gets
planned, then developed, then tested and then released. This repeats with every feature. The
result is a very adaptable software development model.

192 / 244 Fuchs

VIPER Chapter 8. Project Management

Figure 8.2: Life cycle of an agile project management method

8.2 Agile Project Management

For this project, the agile model was chosen. The main reasons for this decision were the
customer involvement and promotion of team work.[83] Since the requirements where very
dependent on the available time for this project, a very adaptive model where the ultimate
goal was not completely defined was needed. As [83] states, an agile model should be chosen
in these cases.

Furthermore, the team had to decide on an agile method. The decision fell on Scrumban
which is a combination of Scrum and Kanban. This model was chosen due to the team’s
experience with this methodology. Scrumban takes the advantages of both models and
combines them leaving behind a model that sets the timer for a process cycle (“Sprints”) to
one to two weeks and includes daily (in the team’s case weekly) sprint meetings where the
current status is discussed. Also, the team included Kanban’s work board to visualize the
tasks as well as Scrum’s user stories for defining the requirements.

8.2.1 Sprints

The team decided to split the project into six sprints with a runtime of about 2 weeks each,
where holidays were excluded:

Sprint 1 The first sprint started on 29th September and ended on 13th October. In this
sprint, the team mainly created mockups and designed the interfaces and database. Also, the
members made themselves comfortable with the development frameworks, mainly for the
AR- and VR-applications.

Fuchs 193 / 244

Chapter 8. Project Management VIPER

Sprint 2 The second sprint, which lasted from 14th October to 27th October, included the
first implementations of the user stories. This sprint was very focused on setting up the
environments and creating basic functionalities such as moving around in the room (VR) or
displaying virtual objects (AR). Also, the team enhanced some of the API-definitions and
implemented the database.

Sprint 3 In the third sprint, the team managed to find a sponsor in A1. This allowed VIPER
to be hosted on more stable and faster service. With this sponsorship, the team moved from
Github toGitlab, whichmade the implementation of CI easier. Therewere some advancements
in the development of the demonstrations as well as designing the website for developers
and clients.

Sprint 4 The fourth sprint began on 11th November and lasted until 24th November. The
plan for this sprint was to finish the main applications as well as making communication with
the service possible. Also the developer website should have been finished. Unfortunately,
most of these tasks, namely all except the AR-demonstration, were not finished in time. They
thus had to be moved to the sprints 5 and 6.

Sprint 5 and 6 The last two sprints included developing the final functionalities for the
client website and the demonstration applications as well as deploying all services. Also,
the team finally implemented the client library into the application making experiencing a
payment process available. Originally, we planned to complete these sprints from the 25th
November to the 22nd December. Due to some delays especially with the communication
between back end and applications, the sixth sprint was extended to late January. Also, the
team decided to only develop one application for VR since multiple demonstrations could
not be finished in time. On 30th January, the project was finished.

8.2.2 Documentation

To document and keep track of the progress made during the project, weekly meetings were
scheduled, discussing tasks, achievements, issues and possible solutions to them. In addition,
roughly every month a meeting with the client was held, in order to inform them about the
project as a whole and to receive feedback. These exchanges had to be documented, not only
as a tool to keep a consistent overview about the project, but also to be used as a retrospective.
Meetings with the client were scheduled a week prior per e-mail, informing about the date
and time of the meeting as well as the planned agenda. This proved to be important, as
the client received an overview of the following meetings contents and could add important
points to the agenda if necessary. This way, every member was informed of the meeting
subjects beforehand and could prepare accordingly.

Furthermore, the communication between the client and the project team in the form of
periodical meetings was crucial in order to gain feedback and to fulfill the requirements they
presented, in order to create the product they bare in mind. Close to every meeting included
status updates on the current project progress, in which every team member discussed their
task. The client gave feedback, asked questions that might not have been considered yet and
gave their input. Afterwards the remaining agenda points were discussed.

194 / 244 Fuchs, Matouschek

VIPER Chapter 8. Project Management

Themeeting protocols were distributed to every team associate viamail andwere uploaded
to an accessible Google Drive folder, in order to inform every member regarding the discussed
topics, especially absentees.

Figure 8.3: Viper Meeting Protocol Layout

Every meeting is documented using this specific layout. With it, all necessary information
is presented in a clear and concise way. The header includes general information about the
meeting, regarding attendees, date, time and duration as well as location. What follows are
the planned agenda points to be discussed. Each report states the crucial information and
exchanges presented during the meeting and are separated by agenda point. The reports
are then further divided into sub-reports if necessary. Every entry must be assigned to an
attendee in order to keep track of all statements correctly. The protocol then continues by
listing current ’To-Do’ tasks, e.g. tasks to be done in the near future as a way to create an
overview of all assignments and responsibilities. Every ’To-Do’ is assigned to one or more
team members and receives a deadline. The protocol is concluded by listing ’Follow-Ups’
which describe crucial topics to be discussed in future meetings.

Matouschek 195 / 244

Chapter 8. Project Management VIPER

8.3 Project Management Tools

Selection of the right tools for project management is crucial as these tools can greatly affect
how easy it is to manage the team, project work and time.

8.3.1 ZenHub

For managing all user stories of the chosen project method Scrumban ZenHub [174], which
integrates well with Github, was chosen. This tools provides a Scrumban Board integrated
into Github. The board has separate pipelines to manage the current status of all user stories.
User stories that have not been touched are in the initial New Issues pipeline. User stories
of the current sprint are put into the Backlog pipeline. From there on the development
process is started and the user stories is taken through all of the development stages and the
corresponding pipeline: Design, In Progress, Testing, Documentation, Review/QA and finally
Closed. The user stories of ZenHub are actually just Github Issues and all features of ZenHub,
like pipelines and tags, are realized using standard Github features. For creating overviews
and custom diagrams with a program like Microsoft Excel or Google Sheets, all user stories
can be exported to a CSV file.

8.3.2 Toggl

As a time management tool Toggl [158] was chosen. This tool is used for real-time time
tracking and has therefore the potential to deliver the most accurate results. Every time
work on a user story is started a timer entry is started. It is stopped again when the work
is done or interrupted. For clarity all Toggl timer entries were given the same name as the
user story that was worked on during that time. Together with the list of all timer entries,
this allows for detailed controlling of the project’s progress. Additionally, Toggl provides
diagrams to visualize the work done on the project. The timer entries used in these diagrams
can be filtered by team member, project and task to allow for a detailed view of individual
aspects of the project. The diagram in Figure 8.4 shows all work done for this project.

196 / 244 Strasser

VIPER Chapter 8. Project Management

Figure 8.4: Toggl diagram of all work that was done for this project

Strasser 197 / 244

VIPER Chapter 9. Conclusion and future work

Chapter 9

Conclusion and future work

This project showed a new way of paying inside virtual restricted environments by moving
the payment setup outside and only executing minimal authentication steps inside of it.
Different system architectures and their strengths and weaknesses were compared. Possible
business applications and monetization strategies were shown. The implementation of the
demonstration applications was shown and the challenges of authentication inside them
discussed. Back end technologies that make the payment possible were compared and the
differences of payment technologies highlighted. The web application for the payment
account management was explained and the design choices elaborated. Finally the project
management techniques used to manage and coordinate this project were explained.

9.1 Conclusion

This project showed a new way of paying inside virtual restricted environments by moving
the payment setup outside and only executing minimal authentication steps inside of it.
Different system architectures and their strengths and weaknesses were compared. Possible
business applications and monetization strategies were shown. The implementation of the
demonstration applications was shown and the challenges of authentication inside them
discussed. Back end technologies that make the payment possible were compared and the
differences of payment technologies highlighted. The web application for the payment
account management was explained and the design choices elaborated. Finally the project
management techniques used to manage and coordinate this project were explained.

9.2 Future work

Virtual Reality: While the Virtual Reality (VR) demo solidly stands on its own, there is
still room for improvement. Some functionalities have yet to be implemented, as a lack of
time resulted in the focus on the essential components of the application. Features such as
being able to log in manually, a hover effect displaying information of objects and additional
stylistic elements could add to the overall impression of the application. In addition, different
methods of authentication may be provided, rather than just pin input.

Currently the demo only supports Oculus devices. Future advancements can be made
by not only implementing support for various alternative VR devices, but also by creating
applications in other popular development environments, since the developed application

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 199 / 244

Chapter 9. Conclusion and future work VIPER

can only act as a guideline project for Unity developers. This would result in a great increase
in targeted developers that might make use of Viper.

Furthermore preexisting demo applications can be extended by integrating Viper and
thereby showing the versatility and ease of implementation that the service provides.

Augmented Reality: In the future, more Software Development Kits (SDKs) like ARCore,
Vuforia or Apple’s ARKit could be supported. Also, a valid version of Wikitude could be
implemented. These features would allow more developers to reference to VIPER Interactive
Payment Engine Reification (VIPER)’s demonstration applications and increase the popularity
of the service. Additionally, the Augmented Reality (AR)-demo could support more AR-
technologies like marker-based AR or complex augmentations.

There could be even more applications, specifically designed for the Operating Systems
(OSs). These applications would be developed in Android Studio and Xcode and would be a
reference for the developers of these development environments. Also, applications could get
developed for AR-headsets like Microsoft’s HoloLens 2. Development on these devices would
allow VIPER to increase their market potential even further and make payment available in
every restricted environment.

With developing on more devices, VIPER could even implement new versions of identity
verification. These could be biometric authentications such as fingerprint or iris scans.

Back end To use the microservice system in a production environment multiple security
aspects have to be improved and all components have to be tested further. The security of
the services can be increased by implementing database encryption and using Transport
Layer Security (TLS) for inter-service communication. Additionally, the most recent software
releases of all frameworks should be used. To support more payment methods, more payment
services can be implemented. The Braintree service needs to be update once the grant-API is
released by Braintree. In the European Union new payment related legal changes are planned
and the service needs to be adjusted accordingly. The deployment of the infrastructure may
be moved to different cloud providers once all Exoscale credits are used. Switching cloud
providers requires a reevaluation of available cloud providers, more detailed funding plans
and changes in the deployment procedures. To increase the manageability of microservices a
Kubernetes infrastructure could be implemented.

Web Architecture For future improvements, a more customizable web application would
give the user a better feeling. The dashboard could be adjusted so that the user can pick
the windows he wants to see when the application opens. This would also allow the user to
rearrange the windows to his personal preferences. Another improvement from which the
website could gain a lot would be more and customizable statistics. These statistics should
additionally be customizable and dynamic. Additionally type definitions for the PayPal library
could be created to make a more seamless integration of the Braintree SDK. Thus removing
the liabilty to third party integrations of the Braintree SDK. Finally, a usability study should be
carried out to see how users react to the application and how it could be enhanced according
to this information.

200 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Glossary

Glossary

Angular-CLI “The Angular-CLI is a command line tool, which makes it easy to create an
application that already works, right out of the box and already follows best practices.
It provides tools, which help with development, linting and testing. Furthermore it
helps maintaining best practices, since it can generate components, routes, services,
etc. and automatially create simple test shells for all of these.”[9]. 163, 184–187

application An application that is registered to an organization and has an Application
Programming Interface (API) key with which it gets access to the VIPER payment API.
12, 18, 84, 100, 109, 137, 138, 151

assets “media or data that is used in Unity, such as 3D models, audio files and images”. 34

binocular vision the vision of both eyes overlapping. 24

Clearing House A financial instituation that manages the exchange of value assets between
to parties. It is used to reduce the risk of a partie failing to meet its trade settlement
obligations, centralizes and unifies the Clearing process and is cost efficent. 116

client library A dynamic C++ library that connects applications to the VIPER back end
services. 18, 58, 71, 151–153

Cloud Anchors “Cloud Anchors lets you make ARKit and/or ARCore anchors available to
multiple devices in the same environment. Users in the same environment can add
Cloud Anchors to the AR scene that they see on their device. Your app can render 3D
objects attached to the Cloud Anchors, letting users see and interact with the objects
simultaneously”[138]. 49, 51

customer The person who uses the VIPER service to pay for item in applications which
support it. 12, 83, 84, 93, 98, 106–109, 135, 138

DBMS A system software for creating and managing databases. 83–88, 137

developer The member of an organization who develops applications. 12, 18, 83, 84, 100,
106, 137, 138, 151

EMV “a specification for payment cards utilizing built in micro chips”. 29

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 201 / 244

Glossary VIPER

Extended Tracking “Extended Tracking is the concept that a target’s pose information will
be available even when the Target is no longer in the field of view of the camera or
cannot directly be tracked for other reasons. Extended Tracking utilizes the Device
Tracker to improve tracking performance and sustain tracking even when the target is
no longer in view”[55]. 49, 51

Face Detection The process of detecting a face on the image captured by a camera. 53

Feature Points Visually distinct features in a captured camera image. 51

Flat-Design Flat-Design is a design principle, where two-dimensional elements and bright
colors are used. real world elements are used for reference but they are reduced to
minimalistic shapes. This minimalistic design also dispenses of gradients and textures..
157

head mounted display “A Head-Mounted Display is a worn device that has a small display
in front of one or each eye. Its main use is for Virtual Reality applications, though other
uses include aviation and engineering.”. 24

Hypervisor A software that emulates the hardware of a machine. From the old word for OS,
supervisor. [122] . 142

Image Recognition The process of recognising an image which is stored in a database. 53

immersive the feeling of being completely involved, present in something (e.g. a virtual
environment). 24, 44

Instant Tracking “Instant tracking is an algorithm that does not aim to recognize a prede-
fined target and start the tracking procedure thereafter, but immediately start tracking
in an arbitrary environment. This enables very specific use cases to be implemented”[75].
45

maven “Apache Maven is a software project management and comprehension tool.”[93] .
140, 142

NuGet NuGet is a .NET package manager for Visual Studio [8]. 151

organization A group or legal entity, registered at VIPER, which can receive payments via
their registered applications. 12, 22, 83, 84, 109, 137, 138

Point-Of-Sale Sometime called point-of-purchase; The time and place where a transaction
is completed. 119

prefab “an object in Unity with the intent to be reused or distributed”. 38

security group An Exoscale security group is a set of firewall rules that apply to all Exoscale
instances in this security group. 109

202 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Glossary

Simultaneous Localization And Mapping “’SLAM’ is not a particular algorithm or piece
of software, but rather it refers to the problem of trying to simultaneously localise (i.e.
find the position/orientation of) some sensor with respect to its surroundings, while at
the same time mapping the structure of that environment” [40]. 45, 48, 51, 53, 62

Skeuomorphism “Skeuomorphism refers to a design principle in which design cues are
taken from the physical world. This term is most frequently applied to user interfaces
(UIs), where much of the design has traditionally aimed to recall the real world - such
as the use of folder and files images for computer filing systems, or a letter symbol for
email - probably to make computers feel more familiar to users.”[142]. 157

teleoperation the remote control of a device or machine. 45

user A person registered at VIPER. This can be either a customer or a developer. 12, 83, 84,
87, 89, 98, 100–106, 108, 109, 135, 137, 210, 212

Visual Studio Microsoft Visual Studio is an Integrated Development Environment (IDE)
from Microsoft. It is used to develop programs, mainly with C# and C++. 151

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 203 / 244

Acronyms VIPER

Acronyms

ACH Automated Clearing House. 116, 117, 120, 123, 124

ADB Android Debugging Bridge. 185

API Application Programming Interface. 12, 71, 78, 81–83, 97–100, 109, 110, 122, 138, 149,
161, 163, 177, 192

AR Augmented Reality. 5, 11, 12, 15, 18, 19, 30, 43–56, 65, 70, 72, 98, 100, 137, 151, 173,
191, 192, 198

ARIA Accessible Rich Internet Applications. 163

BDD Behavior Driven Development. 183

BI Business Intelligence. 78

BIC Business Identifier Code. 116

CD Continous Delivery. 144–146, 186

CI Continuous Integration. 55, 76, 140, 144–146, 150, 184, 186, 192

CL Client Library. 71

CLI Command Line Interface. 142

CORS Cross Origin Resource Sharing. 110

CRUD Create, Read, Update, Delete. 91, 128, 129

CT Computed Tomography. 46

DE Desktop Environment. 186, 187

DHCP Dynamic Host Configuration Protocol. 97

DNS Domain Name Service. 140

DOM Document Object Model. 162, 183

DTO Data Transfer Object. 135

EFT Electronic Funds Transfer. 115, 117, 120, 124

204 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Acronyms

ERD Entity Relationship Diagram. 100, 101, 136, 138

EU European Union. 116

FAB Floating Action Button. 156, 173, 175

FOV Field of view. 24, 26, 27

GPS Global Positioning System. 49

GPU Graphics Processing Unit. 101

GSA Geld Service Austria. 116

HMD head mounted display. 24, 26, 27, 30–32, 41, 42

HTML Hypertext Markup Language. 52, 162, 163, 178, 180–183

HTTP Hypertext Transfer Protocol. 82, 94–98, 103–105, 135, 136, 151–153, 163, 165, 176,
178, 180, 184, 220

HTTPS Hypertext Transfer Protocol Secure. 97, 110, 187, 188

IBAN International Bank Account Number. 116

IDE Integrated Development Environment. 164

IO Input/Output. 170, 184

ITU International Telecommunications Union. 155

JEE Java Enterprise Edition. 80

JS JavaScript. 52, 161, 162, 164, 165, 177

JSON JavaScript Object Notation. 82, 94, 96, 98, 153

JWT JSON Web Token. 102–105, 108, 153, 165, 176, 210

LTS Long-Term Support. 163

MR Mixed Reality. 43, 44, 50–52

MRI Magnetic Resonance Imaging. 46

NACHA National Automated Clearing House Association. 116

Netflix OSS Netflix Open Source Software. 81

NPM Node Package Manager. 177, 178

OS Operating System. 16, 49, 51–54, 78, 139, 198

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 205 / 244

Acronyms VIPER

OWASP Open Web Application Security Project. 101

PC Personal Computer. 11, 155

PCISSD Payment Card Industry Data Security Council. 119

PE-ACH Pan-European automated clearing house. 116

PSP Payment Service Provider. 21, 117–123, 125–127

QR-code Quick Response-code. 19, 46, 47, 55, 67, 68

ReST Representational State Transfer. 16, 77, 78, 94, 95, 97, 98, 109, 122, 124, 128, 129, 149

SDD Software Design Description. 189

SDK Software Development Kit. 27, 32, 45, 49–56, 60, 62, 177, 185, 198

SEPA Single Euro Payments Area. 116

SLAM Simultaneous Localization And Mapping. 45, 48, 62

SOAP Simple Object Access Protocol. 94, 98

SRS Software Requirement Specification. 189

SSL Secure Sockets Layer. 187, 188

TGM Technologisches Gewerbemuseum. 7

TLS Transport Layer Security. 97, 110, 198

TS TypeScript. 164, 177

TV Television. 54

UI User Interface. 54, 58, 59, 151, 161–163, 180, 183, 184

URL Uniform Resource Locator. 94, 95, 99, 110, 111, 176, 181, 182

USA United States of America. 116

USP Unique Selling Point. 50

UX User Experience. 18, 58, 64, 71

VIPER VIPER Interactive Payment Engine Reification. 5, 11, 12, 17–19, 21, 55, 56, 59, 60,
66–68, 75, 79–82, 86, 87, 93, 97, 98, 102, 104, 109, 110, 112, 113, 135, 137, 138, 141,
151, 155–158, 161, 163, 166, 172, 189, 192, 198

VR Virtual Reality. 5, 11, 12, 15, 18, 19, 23–28, 30, 32, 41, 43, 44, 50, 51, 54, 98, 100, 137,
151, 155, 173, 191, 192, 197

206 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Acronyms

VS Visual Studio. 52, 73

XML eXtensible Markup Language. 98, 99

XR Cross Reality. 5, 11, 15, 55, 78

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 207 / 244

Bibliography VIPER

Bibliography

[1] A11Y Project. 07.04.2019. The Accessibility Project. URL: https://a11yproject.com/.

[2] Abolfazl Aleahmad, Hadi Amiri, and Masoud Rahgozar. “Main Memory Databases vs.
Disk-Resident Databases”. In: (Jan. 2006).

[3] AliPay. AliPay Website. 03.04.2019. URL: https://global.alipay.com/products/
online.

[4] Amazon. Alexa Index top 1M. 03.04.2019. URL: http://s3.amazonaws.com/alexa-
static/top-1m.csv.zip.

[5] Amazon. Amazon Pay website. 03.04.2019. URL: https://pay.amazon.com/.

[6] Amazon. Amazon Web Services cloud computing. 03.04.2019. URL: https : / / aws .
amazon.com/what-is-cloud-computing/.

[7] Amazon Page Load Revenue Increase. 01.04.2019. Amazon. URL: https://blog.qburst.
com/2017/05/make-your-apps-load-faster-with-angular-2/.

[8] An introduction to NuGet. 2019/04/01. Microsoft. URL: https://docs.microsoft.com/
en-us/nuget/what-is-nuget.

[9] Angular-CLI. 24.03.2019. Google LLC. URL: https://cli.angular.io/.

[10] angular-jwt package. 05.04.2019. npm, Inc. URL: https://www.npmjs.com/package/
angular-jwt.

[11] angular2-image-upload package. 05.04.2019. npm, Inc. URL: https://www.npmjs.com/
package/angular2-image-upload.

[12] AppGameKit - VR. 7.04.2019. The Game Creators Ltd. URL: https://www.appgamekit.
com/dlc/vr.

[13] Apple.ApplePayWebsite. 03.04.2019. URL: https://developer.apple.com/documentation/
passkit/apple_pay.

[14] ArangoDB. 2019/04/01. AragoDB Inc. URL: https://www.arangodb.com/.

[15] ARCore Fundamental Concepts. 26.02.2019. Google. URL: https://developers.google.
com/ar/discover/concepts.

[16] ARCore Supported Devices. 26.02.2019. Google. URL: https://developers.google.
com/ar/discover/supported-devices.

[17] ARKit Apple Developer Documentation. 13.03.2019. Apple. URL: https://developer.
apple.com/documentation/arkit.

[18] ARKit2. 26.02.2019. Apple. URL: https://developer.apple.com/arkit/.

208 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

https://a11yproject.com/
https://global.alipay.com/products/online
https://global.alipay.com/products/online
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://pay.amazon.com/
https://aws.amazon.com/what-is-cloud-computing/
https://aws.amazon.com/what-is-cloud-computing/
https://blog.qburst.com/2017/05/make-your-apps-load-faster-with-angular-2/
https://blog.qburst.com/2017/05/make-your-apps-load-faster-with-angular-2/
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://cli.angular.io/
https://www.npmjs.com/package/angular-jwt
https://www.npmjs.com/package/angular-jwt
https://www.npmjs.com/package/angular2-image-upload
https://www.npmjs.com/package/angular2-image-upload
https://www.appgamekit.com/dlc/vr
https://www.appgamekit.com/dlc/vr
https://developer.apple.com/documentation/passkit/apple_pay
https://developer.apple.com/documentation/passkit/apple_pay
https://www.arangodb.com/
https://developers.google.com/ar/discover/concepts
https://developers.google.com/ar/discover/concepts
https://developers.google.com/ar/discover/supported-devices
https://developers.google.com/ar/discover/supported-devices
https://developer.apple.com/documentation/arkit
https://developer.apple.com/documentation/arkit
https://developer.apple.com/arkit/

VIPER Bibliography

[19] Ronald T. Azuma. “A Survey of Augmented Reality”. In: Presence: Teleoper. Virtual
Environ. 6.4 (Aug. 1997). 20.02.2019, pp. 355–385. ISSN: 1054-7460. DOI: 10.1162/
pres.1997.6.4.355. URL: http://dx.doi.org/10.1162/pres.1997.6.4.355.

[20] Beatsaber Footage. 7.4.2019. Playstation Europe. URL: https://www.flickr.com/
photos/playstationblogeurope/27771434737.

[21] Ph.D Ben Ramsbottom B.Sc. How Virtual Reality is Changing Healthcare for the Better.
7.04.2019. The Doctor Weighs In. URL: https://thedoctorweighsin.com/virtual-
reality-improving-healthcare/.

[22] G. Booch.Object Oriented Design:With Applications. The Benjamin/Cummings Series in
Ada and Software Engineering. Benjamin/Cummings Pub., 1991. ISBN: 9780805300918.
URL: https://books.google.at/books?id=w5VQAAAAMAAJ.

[23] Braintree. Braintree testing documentation. 05.04.2019. URL: https://developers.
braintreepayments.com/reference/general/testing/java.

[24] Braintree.BraintreeWebsite. 03.04.2019. URL: https://developers.braintreepayments.
com/start/overview.

[25] BraintreeDropinUI. 07.04.2019. Braintree. URL: https://developers.braintreepayments.
com/guides/drop-in/overview/javascript/v3.

[26] Braintree-web package. 05.04.2019. npm, Inc. URL: https://www.npmjs.com/package/
braintree-web.

[27] Green Buzz. How To Attract An Audience With Augmented Reality. 24.02.2019. Green
Buzz Agency. URL: http : / / greenbuzzagency . com / attract - audiences - with -
augmented-reality/.

[28] Alan Calder and Geraint Williams. PCI DSS: A Pocket Guide. 4th. It Governance Ltd,
2015. ISBN: 1849287813, 9781849287814.

[29] Client Side Load Balancer: Ribbon. 2019/04/01. Pivotal Software, Inc. URL: https:
//cloud.spring.io/spring- cloud- netflix/single/spring- cloud- netflix.
html#spring-cloud-ribbon.

[30] U.S. Congress. Electronic Fund Transfer Act (EFTA) (15 USC 1693 et seq.)
An Act to extend the authority for the flexible regulation of interest rates on deposits and
accounts in depository institutions.
https://www.federalreserve.gov/boarddocs/caletters/2008/0807/08- 07_
attachment.pdf. 1978.

[31] Sharon Coone. Riot Games wins Sports Emmy for 2017 World Championship Broadcast.
20.02.2019. Blitz Esports. URL: https://blitzesports.com/lol/article/3384/
riot-games-wins-sports-emmy-2017-world-championship-broadcas.

[32] Couchbase. 2019/04/01. Couchbase. URL: https://www.couchbase.com/.

[33] Alan B. Craig. “Chapter 7 - Mobile Augmented Reality”. In: Understanding Aug-
mented Reality. Ed. by Alan B. Craig. Boston: Morgan Kaufmann, 2013, pp. 209 –
220. ISBN: 978-0-240-82408-6. DOI: https://doi.org/10.1016/B978- 0- 240-
82408-6.00007-2. URL: http://www.sciencedirect.com/science/article/pii/
B9780240824086000072.

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 209 / 244

https://doi.org/10.1162/pres.1997.6.4.355
https://doi.org/10.1162/pres.1997.6.4.355
http://dx.doi.org/10.1162/pres.1997.6.4.355
https://www.flickr.com/photos/playstationblogeurope/27771434737
https://www.flickr.com/photos/playstationblogeurope/27771434737
https://thedoctorweighsin.com/virtual-reality-improving-healthcare/
https://thedoctorweighsin.com/virtual-reality-improving-healthcare/
https://books.google.at/books?id=w5VQAAAAMAAJ
https://developers.braintreepayments.com/reference/general/testing/java
https://developers.braintreepayments.com/reference/general/testing/java
https://developers.braintreepayments.com/start/overview
https://developers.braintreepayments.com/start/overview
https://developers.braintreepayments.com/guides/drop-in/overview/javascript/v3
https://developers.braintreepayments.com/guides/drop-in/overview/javascript/v3
https://www.npmjs.com/package/braintree-web
https://www.npmjs.com/package/braintree-web
http://greenbuzzagency.com/attract-audiences-with-augmented-reality/
http://greenbuzzagency.com/attract-audiences-with-augmented-reality/
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#spring-cloud-ribbon
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#spring-cloud-ribbon
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#spring-cloud-ribbon
https://www.federalreserve.gov/boarddocs/caletters/2008/0807/08-07_attachment.pdf
https://www.federalreserve.gov/boarddocs/caletters/2008/0807/08-07_attachment.pdf
https://blitzesports.com/lol/article/3384/riot-games-wins-sports-emmy-2017-world-championship-broadcas
https://blitzesports.com/lol/article/3384/riot-games-wins-sports-emmy-2017-world-championship-broadcas
https://www.couchbase.com/
https://doi.org/https://doi.org/10.1016/B978-0-240-82408-6.00007-2
https://doi.org/https://doi.org/10.1016/B978-0-240-82408-6.00007-2
http://www.sciencedirect.com/science/article/pii/B9780240824086000072
http://www.sciencedirect.com/science/article/pii/B9780240824086000072

Bibliography VIPER

[34] Create a .pfx/.p12 certificate file using OpenSSL. 2019/04/01. SSL.com. URL: https:
//www.ssl.com/how-to/create-a-pfx-p12-certificate-file-using-openssl/.

[35] ctypes - A foreign function library for Python. 2019/04/01. Python Software Foundation.
URL: https://docs.python.org/3/library/ctypes.html.

[36] Meenu Dave. “SQL and NoSQL Databases”. In: International Journal of Advanced Re-
search in Computer Science and Software Engineering (Aug. 2012). URL: https://www.
researchgate.net/publication/303856633_SQL_and_NoSQL_Databases.

[37] daytanyze. Payment Service Provider marketshare data (Alexa Top 1M). 03.04.2019. URL:
https://www.datanyze.com/market-share/payment-processing/Alexa%20top%
201M/.

[38] Declarative REST Client: Feign. 2019/04/01. Pivotal Software, Inc. URL: https://cloud.
spring.io/spring-cloud-netflix/multi/multi_spring-cloud-feign.html.

[39] DefinitelyTyped website. 05.04.2019. DefinitelyTyped. URL: http://definitelytyped.
org/.

[40] Definition of SLAM. URL: https://www.kudan.eu/kudan-news/an-introduction-to-
slam/.

[41] Swati Dhingra. REST vs. SOAP: Choosing the best web service. 2019/04/01. TechTar-
get. URL: https://searchmicroservices.techtarget.com/tip/REST-vs-SOAP-
Choosing-the-best-web-service.

[42] Diagram of a monolithic application. 03.04.2019. URL: https://cdn-images-1.medium.
com/max/1000/1*DH0QraG0ojgeDCtg5M-tmQ.png.

[43] A1 Digital. A1 Digital Website. 03.04.2019. URL: https://www.a1.digital/.

[44] Docker. Docker Compose Website. 03.04.2019. URL: https://docs.docker.com/
compose/.

[45] Docker. Docker Container overview. 03.04.2019. URL: https://www.docker.com/
resources/what-container.

[46] Docker. Docker documentation. 03.04.2019. URL: https://docs.docker.com/.

[47] Docker. Docker Website. 03.04.2019. URL: https://www.docker.com.

[48] L. Dusseault and J. Snell. PATCH Method for HTTP. RFC 5789. http://www.rfc-
editor.org/rfc/rfc5789.txt. RFC Editor, 2010. URL: http://www.rfc-editor.
org/rfc/rfc5789.txt.

[49] Greg Edwards-Stewart Amanda; Hoyt Tim; Reger. “Classifying different types of
augmented reality technology”. In: Annual Review of CyberTherapy and Telemedicine
14 (Jan. 2016). 22.02.2019, p. 200.

[50] Elastic. Logstash Website. 03.04.2019. URL: https://www.elastic.co/products/
logstash.

[51] Encryption at Rest. 2019/04/01. MongoDB, Inc. URL: https://docs.mongodb.com/
manual/core/security-encryption-at-rest/.

[52] Erstellen von Virtual-Reality-Spielen in Lumberyard. 7.04.2019. Amazon Web Services
Inc. URL: https://docs.aws.amazon.com/de_de/lumberyard/latest/userguide/
virtual-reality.html.

210 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

https://www.ssl.com/how-to/create-a-pfx-p12-certificate-file-using-openssl/
https://www.ssl.com/how-to/create-a-pfx-p12-certificate-file-using-openssl/
https://docs.python.org/3/library/ctypes.html
https://www.researchgate.net/publication/303856633_SQL_and_NoSQL_Databases
https://www.researchgate.net/publication/303856633_SQL_and_NoSQL_Databases
https://www.datanyze.com/market-share/payment-processing/Alexa%20top%201M/
https://www.datanyze.com/market-share/payment-processing/Alexa%20top%201M/
https://cloud.spring.io/spring-cloud-netflix/multi/multi_spring-cloud-feign.html
https://cloud.spring.io/spring-cloud-netflix/multi/multi_spring-cloud-feign.html
http://definitelytyped.org/
http://definitelytyped.org/
https://www.kudan.eu/kudan-news/an-introduction-to-slam/
https://www.kudan.eu/kudan-news/an-introduction-to-slam/
https://searchmicroservices.techtarget.com/tip/REST-vs-SOAP-Choosing-the-best-web-service
https://searchmicroservices.techtarget.com/tip/REST-vs-SOAP-Choosing-the-best-web-service
https://cdn-images-1.medium.com/max/1000/1*DH0QraG0ojgeDCtg5M-tmQ.png
https://cdn-images-1.medium.com/max/1000/1*DH0QraG0ojgeDCtg5M-tmQ.png
https://www.a1.digital/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://docs.docker.com/
https://www.docker.com
http://www.rfc-editor.org/rfc/rfc5789.txt
http://www.rfc-editor.org/rfc/rfc5789.txt
http://www.rfc-editor.org/rfc/rfc5789.txt
http://www.rfc-editor.org/rfc/rfc5789.txt
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://docs.mongodb.com/manual/core/security-encryption-at-rest/
https://docs.mongodb.com/manual/core/security-encryption-at-rest/
https://docs.aws.amazon.com/de_de/lumberyard/latest/userguide/virtual-reality.html
https://docs.aws.amazon.com/de_de/lumberyard/latest/userguide/virtual-reality.html

VIPER Bibliography

[53] Everything you need to build on Android. 27.02.2019. Google. URL: https://developer.
android.com/studio/features.

[54] Exoscale. Exoscale Website. 03.04.2019. URL: https://www.exoscale.com/.

[55] Extended Tracking. 24.02.2019. PTC. URL: https://library.vuforia.com/articles/
Training/Extended-Tracking.

[56] Feign Apache HttpClient. 2019/04/01. MvnRepository. URL: https://mvnrepository.
com/artifact/io.github.openfeign/feign-httpclient.

[57] Field of View for Virtual Reality Headsets Explained. 7.04.2019. VR-Lens-Lab. URL:
https://vr-lens-lab.com/field-of-view-for-virtual-reality-headsets/.

[58] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Semantics and
Content. RFC 7231. http://www.rfc-editor.org/rfc/rfc7231.txt. RFC Editor,
2014. URL: http://www.rfc-editor.org/rfc/rfc7231.txt.

[59] Roy T. Fielding et al. “Reflections on the REST Architectural Style and "Principled
Design of the Modern Web Architecture" (Impact Paper Award)”. In: Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering. ESEC/FSE 2017.
Paderborn, Germany: ACM, 2017, pp. 4–14. ISBN: 978-1-4503-5105-8. DOI: 10.1145/
3106237.3121282. URL: http://doi.acm.org/10.1145/3106237.3121282.

[60] M. Fowler. Agile Software Development. 17.03.2019. URL: http://martinfowler.com/
agile.html.

[61] Spencer Gibb. Spring Cloud Greenwich.RELEASE is now available. 2019/04/01. Piv-
otal Software, Inc. URL: https://spring.io/blog/2019/01/23/spring-cloud-
greenwich-release-is-now-available.

[62] Henri Gilbert and Helena Handschuh. “Security Analysis of SHA-256 and Sisters”. In:
Selected Areas in Cryptography. Ed. by Mitsuru Matsui and Robert J. Zuccherato. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 175–193. ISBN: 978-3-540-24654-1.

[63] R. Silva; J. C. Oliveira; G. A. Giraldi. Introduction to Augmented Reality. 20.02.2019.
National Laboratory for Scientific Computation. URL: http://lncc.br/~jauvane/
papers/RelatorioTecnicoLNCC-2503.pdf.

[64] Gitlab. GitlabCI Diagram. 03.04.2019. URL: https://about.gitlab.com/images/
blogimages/cicd_pipeline_infograph.png.

[65] Gitlab. GitlabCI Overview. 03.04.2019. URL: https://docs.gitlab.com/ee/ci/.

[66] Google. Cadvisor Website. 03.04.2019. URL: https://github.com/google/cadvisor.

[67] Google’s Material.io color tool with the VIPER colors. 20.02.2019. Google, material.io.
URL: https://material.io/tools/color/#!/?view.left=1&view.right=0&
primary.color=009688&secondary.color=E91E63.

[68] Grafana. Grafan Website. 03.04.2019. URL: https://grafana.com/.

[69] Said Hayani. Here are the most popular ways to make an HTTP request in JavaScript.
2019/04/01. Medium. URL: https://medium.freecodecamp.org/here-is-the-most-
popular-ways-to-make-an-http-request-in-javascript-954ce8c95aaa.

[70] Heidelpay.Payment Service Provider diagram. 03.04.2019. URL: https://www.heidelpay.
com/fileadmin/user_upload/bilder_grafiken/was_ist_ein_psp/schaubild_psp.
jpg.

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 211 / 244

https://developer.android.com/studio/features
https://developer.android.com/studio/features
https://www.exoscale.com/
https://library.vuforia.com/articles/Training/Extended-Tracking
https://library.vuforia.com/articles/Training/Extended-Tracking
https://mvnrepository.com/artifact/io.github.openfeign/feign-httpclient
https://mvnrepository.com/artifact/io.github.openfeign/feign-httpclient
https://vr-lens-lab.com/field-of-view-for-virtual-reality-headsets/
http://www.rfc-editor.org/rfc/rfc7231.txt
http://www.rfc-editor.org/rfc/rfc7231.txt
https://doi.org/10.1145/3106237.3121282
https://doi.org/10.1145/3106237.3121282
http://doi.acm.org/10.1145/3106237.3121282
http://martinfowler.com/agile.html
http://martinfowler.com/agile.html
https://spring.io/blog/2019/01/23/spring-cloud-greenwich-release-is-now-available
https://spring.io/blog/2019/01/23/spring-cloud-greenwich-release-is-now-available
http://lncc.br/~jauvane/papers/RelatorioTecnicoLNCC-2503.pdf
http://lncc.br/~jauvane/papers/RelatorioTecnicoLNCC-2503.pdf
https://about.gitlab.com/images/blogimages/cicd_pipeline_infograph.png
https://about.gitlab.com/images/blogimages/cicd_pipeline_infograph.png
https://docs.gitlab.com/ee/ci/
https://github.com/google/cadvisor
https://material.io/tools/color/#!/?view.left=1&view.right=0&primary.color=009688&secondary.color=E91E63
https://material.io/tools/color/#!/?view.left=1&view.right=0&primary.color=009688&secondary.color=E91E63
https://grafana.com/
https://medium.freecodecamp.org/here-is-the-most-popular-ways-to-make-an-http-request-in-javascript-954ce8c95aaa
https://medium.freecodecamp.org/here-is-the-most-popular-ways-to-make-an-http-request-in-javascript-954ce8c95aaa
https://www.heidelpay.com/fileadmin/user_upload/bilder_grafiken/was_ist_ein_psp/schaubild_psp.jpg
https://www.heidelpay.com/fileadmin/user_upload/bilder_grafiken/was_ist_ein_psp/schaubild_psp.jpg
https://www.heidelpay.com/fileadmin/user_upload/bilder_grafiken/was_ist_ein_psp/schaubild_psp.jpg

Bibliography VIPER

[71] Rolland Jannick; L. Holloway Richard; Fuchs Henry. “Comparison of optical and video
see-through, head-mounted displays”. In: Proceedings of SPIE - The International
Society for Optical Engineering (Jan. 1994). DOI: 10.1117/12.197322.

[72] HTTP request methods. 2019/04/01. Mozilla. URL: https://developer.mozilla.org/
en-US/docs/Web/HTTP/Methods.

[73] Ian Hughes. It’s only rock n roll but I like it. Snapchat Bitmoji. 24.02.2019. flickr. URL:
https://www.flickr.com/photos/epredator/37087332821.

[74] J. Ingeno. Software Architect’s Handbook: Become a successful software architect by imple-
menting effective architecture concepts. Packt Publishing, 2018. ISBN: 9781788627672.
URL: https://books.google.at/books?id=6EZsDwAAQBAJ.

[75] Instant Tracking. 21.02.2019. Wikitude GmbH. URL: https://www.wikitude.com/
external/doc/documentation/7.0/unity/instanttrackingnative.html.

[76] Interface MongoRepository<T,ID>. 2019/04/01. Pivotal Software, Inc. URL: https :
/ / docs . spring . io / spring - data / data - mongodb / docs / current / api / org /
springframework/data/mongodb/repository/MongoRepository.html.

[77] Introducing managed private networks. 2019/04/01. Exoscale. URL: https : / / www .
exoscale.com/syslog/introducing-managed-private-networks/.

[78] Introduction to JSONWebTokens. 2019/04/01. Auth0. URL: https://jwt.io/introduction/.

[79] ITU internet statistcs. 07.04.2019. ITU. URL: https://www.itu.int/en/ITU- D/
Statistics/Pages/stat/default.aspx.

[80] Michael Jackson and Ryan Florence.Modern Web Quote. 26.03.2019. This Dot Media.
URL: https://www.youtube.com/watch?v=Vur2dAFZ4GE&t=913.

[81] Java Native Access (JNA). 2019/04/01. URL: https://github.com/java- native-
access/jna.

[82] Jenkins. Jenkins Website. 03.04.2019. URL: https://jenkins.io/.

[83] Smita Jhajharia, vaishnavi kannan, and Seema Verma. “Agile vs waterfall: A Compara-
tive Analysis”. In: ijsetr 3 (Oct. 2014). 17.03.2019, pp. 2681,2683.

[84] DominiqueRighetto JohnSteven JimManico.Password StorageCheat Sheet. 2019/04/01.
OWASP. URL: https : / / github . com / OWASP / CheatSheetSeries / blob / master /
cheatsheets/Password_Storage_Cheat_Sheet.md#ref5.

[85] JPA Repositories. 2019/04/01. Pivotal Software, Inc. URL: https://docs.spring.io/
spring-data/jpa/docs/1.5.0.RELEASE/reference/html/jpa.repositories.html.

[86] Tech. Sgt. Daryl Knee.Virtual, augmented reality may hold key to future Air Force training.
20.02.2019. Air Combat Command Public Affairs. URL: https://www.afmc.af.mil/
News/Article- Display/Article/1735608/virtual- augmented- reality- may-
hold-key-to-future-air-force-training/.

[87] Dr. Joseph J. LaViola et al. “Analyzing SLAM Algorithm Performance for Tracking in
Augmented Reality Systems”. In: 2017.

[88] Let’s Encrypt is a free, automated, and open Certificate Authority. 2019/04/01. Internet
Security Research Group (ISRG). URL: https://letsencrypt.org/.

212 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

https://doi.org/10.1117/12.197322
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://www.flickr.com/photos/epredator/37087332821
https://books.google.at/books?id=6EZsDwAAQBAJ
https://www.wikitude.com/external/doc/documentation/7.0/unity/instanttrackingnative.html
https://www.wikitude.com/external/doc/documentation/7.0/unity/instanttrackingnative.html
https://docs.spring.io/spring-data/data-mongodb/docs/current/api/org/springframework/data/mongodb/repository/MongoRepository.html
https://docs.spring.io/spring-data/data-mongodb/docs/current/api/org/springframework/data/mongodb/repository/MongoRepository.html
https://docs.spring.io/spring-data/data-mongodb/docs/current/api/org/springframework/data/mongodb/repository/MongoRepository.html
https://www.exoscale.com/syslog/introducing-managed-private-networks/
https://www.exoscale.com/syslog/introducing-managed-private-networks/
https://jwt.io/introduction/
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
https://www.youtube.com/watch?v=Vur2dAFZ4GE&t=913
https://github.com/java-native-access/jna
https://github.com/java-native-access/jna
https://jenkins.io/
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md#ref5
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md#ref5
https://docs.spring.io/spring-data/jpa/docs/1.5.0.RELEASE/reference/html/jpa.repositories.html
https://docs.spring.io/spring-data/jpa/docs/1.5.0.RELEASE/reference/html/jpa.repositories.html
https://www.afmc.af.mil/News/Article-Display/Article/1735608/virtual-augmented-reality-may-hold-key-to-future-air-force-training/
https://www.afmc.af.mil/News/Article-Display/Article/1735608/virtual-augmented-reality-may-hold-key-to-future-air-force-training/
https://www.afmc.af.mil/News/Article-Display/Article/1735608/virtual-augmented-reality-may-hold-key-to-future-air-force-training/
https://letsencrypt.org/

VIPER Bibliography

[89] Kashumi Madampe. “Successful Adoption of Agile Project Management in Software
Development Industry”. In: International Journal of Computer Science and Information
Technology Research 5 (Nov. 2017), pp. 27–33.

[90] Katja Malvoni, Solar Designer, and Josip Knezovic. “Are Your Passwords Safe: Energy-
Efficient Bcrypt Cracking with Low-Cost Parallel Hardware”. In: 8th USENIX Workshop
on Offensive Technologies (WOOT 14). San Diego, CA: USENIX Association, 2014. URL:
https://www.usenix.org/conference/woot14/workshop-program/presentation/
malvani.

[91] Material.io.Material.io font size definitions. 27.02.2019. Google. URL: https://material.
io/tools/color/.

[92] Material.io color tool. 07.04.2019. Google, material.io. URL: https://material.io/
tools/color/.

[93] Maven.Maven Website. 03.04.2019. URL: https://maven.apache.org/.
[94] Meaning of The Color Blue. 07.04.2019. Bourn Creative, LLC. URL: https : / / www .

bourncreative.com/meaning-of-the-color-blue/.
[95] Meaning of The Color Green. 07.04.2019. Bourn Creative, LLC. URL: https://www.

bourncreative.com/meaning-of-the-color-green/.
[96] Meaning of The Color Turquoise. 07.04.2019. Bourn Creative, LLC. URL: https://www.

bourncreative.com/meaning-of-the-color-turquoise/.
[97] microservices.io. Diagram of a microservice application. 03.04.2019. URL: https://

microservices.io/i/Microservice_Architecture.png.
[98] Microsoft C++RESTSDK. 2019/04/01.Microsoft. URL: https://github.com/Microsoft/

cpprestsdk.
[99] Mobile and Tablet Android Version Market Share Worldwide. 26.02.2019. statcounter.

URL: http://gs.statcounter.com/android- version- market- share/mobile-
tablet/worldwide.

[100] Mobile Operating System Market Share Worldwide. 26.02.2019. statcounter. URL: http:
//gs.statcounter.com/os-market-share/mobile/worldwide.

[101] Moment.js. 05.04.2019. Moment.js. URL: http://momentjs.com/.
[102] MongoDB. 2019/04/01. MongoDB, Inc. URL: https://www.mongodb.com/.
[103] MongoDB - Auditing. 2019/04/01. MongoDB, Inc. URL: https://docs.mongodb.com/

manual/core/auditing/.
[104] Pierluigi Montagna. Random Guy Developer Blog. 06.03.2019. Blogger. URL: http:

//pievisdev.blogspot.com/2015/05/survival-shooter-in-unity.html.
[105] A. Mouat. Using Docker. O’Reilly, 2015. ISBN: 9781491915769. URL: https://books.

google.at/books?id=zw2zrQEACAAJ.
[106] muchneeded.com. Amazon usage statistics. 03.04.2019. URL: https://muchneeded.

com/amazon-stats/.
[107] Snehal Mumbaikar, Puja Padiya, and Department Of Computer Engineering. “Web

Services Based On SOAP and REST Principles”. In: International Journal of Scientific
and Research Publications (IJSRP) 3 (2013). ISSN: 2250-3153. URL: http://www.ijsrp.
org/research-paper-0513.php?rp=P171217.

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 213 / 244

https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani
https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani
https://material.io/tools/color/
https://material.io/tools/color/
https://material.io/tools/color/
https://material.io/tools/color/
https://maven.apache.org/
https://www.bourncreative.com/meaning-of-the-color-blue/
https://www.bourncreative.com/meaning-of-the-color-blue/
https://www.bourncreative.com/meaning-of-the-color-green/
https://www.bourncreative.com/meaning-of-the-color-green/
https://www.bourncreative.com/meaning-of-the-color-turquoise/
https://www.bourncreative.com/meaning-of-the-color-turquoise/
https://microservices.io/i/Microservice_Architecture.png
https://microservices.io/i/Microservice_Architecture.png
https://github.com/Microsoft/cpprestsdk
https://github.com/Microsoft/cpprestsdk
http://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
http://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://momentjs.com/
https://www.mongodb.com/
https://docs.mongodb.com/manual/core/auditing/
https://docs.mongodb.com/manual/core/auditing/
http://pievisdev.blogspot.com/2015/05/survival-shooter-in-unity.html
http://pievisdev.blogspot.com/2015/05/survival-shooter-in-unity.html
https://books.google.at/books?id=zw2zrQEACAAJ
https://books.google.at/books?id=zw2zrQEACAAJ
https://muchneeded.com/amazon-stats/
https://muchneeded.com/amazon-stats/
http://www.ijsrp.org/research-paper-0513.php?rp=P171217
http://www.ijsrp.org/research-paper-0513.php?rp=P171217

Bibliography VIPER

[108] NACHA. 2013 NACHA Operating Guidelines.
https://www.firstmid.com/wp- content/uploads/2014/02/2013- Corporate-
Rules-and-Guidelines.pdf. 2013.

[109] DI (FH) Philipp Nagele.Wikitude SDK 8.1: Plane detection, support for iOS 12, Android
9 and more. 26.02.2019. Wikitude. URL: https://www.wikitude.com/blog-plane-
detection-ios12-android9/.

[110] DI (FH) Philipp Nagele.Wikitude Supported Devices. 26.02.2019. Wikitude. URL: https:
//www.wikitude.com/documentation/latest/android/supporteddevices.html.

[111] S. Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly Media,
2015. ISBN: 9781491950333. URL: https://books.google.at/books?id=jjl4BgAAQBAJ.

[112] ng2-charts package. 05.04.2019. npm, Inc. URL: https://www.npmjs.com/package/
ng2-charts.

[113] ngx-braintree package. 05.04.2019. npm, Inc. URL: https://www.npmjs.com/package/
ngx-braintree.

[114] Anton Nikolov. Design principle: Consistency. 27.02.2019. UX Collective. URL: https:
//uxdesign.cc/design-principle-consistency-6b0cf7e7339f.

[115] OpenCV introduction. 26.02.2019. OpenCV. URL: https://opencv.org/.

[116] Janne Paavilainen et al. “The Pokémon GO Experience: A Location-Based Augmented
Reality Mobile Game Goes Mainstream”. In: 20.02.2019. May 2017. DOI: 10.1145/
3025453.3025871.

[117] PayPal.PayPal API PyPI install package. 03.04.2019. URL: https://pypi.org/project/
paypal/.

[118] PayPal. PayPal Website. 03.04.2019. URL: https://www.paypal.com.

[119] C. Percival and S. Josefsson. The scrypt Password-Based Key Derivation Function. RFC
7914. RFC Editor, 2016.

[120] COLIN PERCIVAL. “Stronger key derivation via sequential memory-hard functions”.
In: (Jan. 2009).

[121] Perfect Password - GRC’s Ultra High Security Password Generator. 2019/04/01. Gibson
Research Corporation. URL: https://www.grc.com/passwords.htm.

[122] Thad Peterson and Ron van Wezel. IBM Systems Virtualization: Servers, Storage, and
Software. 1st ed. Redbooks, 2008, p. 15. URL: http://www.redbooks.ibm.com/
redpapers/pdfs/redp4396.pdf.

[123] Thad Peterson and Ron van Wezel. The Evolution of Digital and Mobile Wallets. 1st ed.
MAHINDRA COMVIVA, 2016, p. 4. URL: https://www.paymentscardsandmobile.
com/wp- content/uploads/2016/10/The- Evolution-of- Digital- and- Mobile-
Wallets.pdf.

[124] POCO C++ Libraries - Simplify C++ Development. 2019/04/01. Applied Informatics
Software Engineering GmbH. URL: https://pocoproject.org/index.html.

[125] Ved Prakash Gulati and Shilpa Srivastava. “The Empowered Internet Payment Gate-
way”. In: (Mar. 2019).

214 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

https://www.firstmid.com/wp-content/uploads/2014/02/2013-Corporate-Rules-and-Guidelines.pdf
https://www.firstmid.com/wp-content/uploads/2014/02/2013-Corporate-Rules-and-Guidelines.pdf
https://www.wikitude.com/blog-plane-detection-ios12-android9/
https://www.wikitude.com/blog-plane-detection-ios12-android9/
https://www.wikitude.com/documentation/latest/android/supporteddevices.html
https://www.wikitude.com/documentation/latest/android/supporteddevices.html
https://books.google.at/books?id=jjl4BgAAQBAJ
https://www.npmjs.com/package/ng2-charts
https://www.npmjs.com/package/ng2-charts
https://www.npmjs.com/package/ngx-braintree
https://www.npmjs.com/package/ngx-braintree
https://uxdesign.cc/design-principle-consistency-6b0cf7e7339f
https://uxdesign.cc/design-principle-consistency-6b0cf7e7339f
https://opencv.org/
https://doi.org/10.1145/3025453.3025871
https://doi.org/10.1145/3025453.3025871
https://pypi.org/project/paypal/
https://pypi.org/project/paypal/
https://www.paypal.com
https://www.grc.com/passwords.htm
http://www.redbooks.ibm.com/redpapers/pdfs/redp4396.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4396.pdf
https://www.paymentscardsandmobile.com/wp-content/uploads/2016/10/The-Evolution-of-Digital-and-Mobile-Wallets.pdf
https://www.paymentscardsandmobile.com/wp-content/uploads/2016/10/The-Evolution-of-Digital-and-Mobile-Wallets.pdf
https://www.paymentscardsandmobile.com/wp-content/uploads/2016/10/The-Evolution-of-Digital-and-Mobile-Wallets.pdf
https://pocoproject.org/index.html

VIPER Bibliography

[126] Michele Preziuso. Password Hashing: Scrypt, Bcrypt and ARGON2. 2019/04/01. Medium.
URL: https : / / medium . com / @mpreziuso / password - hashing - pbkdf2 - scrypt -
bcrypt-and-argon2-e25aaf41598e.

[127] Justin Pritchard. ACH Payments Can Benefit Everybody. See How They Work. URL: https:
//www.thebalance.com/how-ach-payments-work-315441.

[128] Stefan Prodan. Dockprom Github Repository. 03.04.2019. URL: https://github.com/
stefanprodan/dockprom.

[129] Prometheus. Prometheus Website. 03.04.2019. URL: https://prometheus.io/.

[130] Christian Szegedy; Wei Liu; Yangqing Jia; Pierre Sermanet; Scott E. Reed; Dragomir
Anguelov; Dumitru Erhan; Vincent Vanhoucke; Andrew Rabinovich. “Going Deeper
with Convolutions”. In: CoRR abs/1409.4842 (2014). arXiv: 1409.4842. URL: http:
//arxiv.org/abs/1409.4842.

[131] Router and Filter: Zuul. 2019/04/01. Pivotal Software, Inc. URL: https://cloud.spring.
io/spring-cloud-netflix/single/spring-cloud-netflix.html#_router_and_
filter_zuul.

[132] RxJS library. 05.04.2019. ReactiveX. URL: https://rxjs-dev.firebaseapp.com/.

[133] Subhrangshu S. Sarkar. “Technological Innovations in Indian Banking Sector-A Trend
Analysis”. In: Journal of Commerce and Management Thought 7 (Jan. 2016), p. 171. DOI:
10.5958/0976-478X.2016.00012.4.

[134] Salted Password Hashing - Doing it Right. 2019/04/01. Defuse Security. URL: https:
//crackstation.net/hashing-security.htm.

[135] Samsung Gear 360. 13.3.2019. Samsung Newsroom. URL: https://www.flickr.com/
photos/samsungtomorrow/24806330129.

[136] Service Discovery: Eureka Clients. 2019/04/01. Pivotal Software, Inc. URL: https://
cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#
_service_discovery_eureka_clients.

[137] Service Discovery: Eureka Server. 2019/04/01. Pivotal Software, Inc. URL: https://
cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#
spring-cloud-eureka-server.

[138] ShareARExperienceswith CloudAnchors. 24.02.2019. Google. URL: https://developers.
google.com/ar/develop/java/cloud-anchors/overview-android.

[139] Scott Stein; Ian Sherr.Why AR is going to give you ’superpowers’ in the future. 13.03.2019.
CNET. Feb. 2019. URL: https://www.cnet.com/news/the-future-of-ar-according-
to-microsoft/.

[140] Sanni Siltanen. “Theory and applications of marker based augmented reality”. PhD
thesis. Jan. 2012, pp. 38, 40, 54. URL: https://www.vtt.fi/inf/pdf/science/2012/
S3.pdf.

[141] similartech. Payment Service Provider marketshare data. 03.04.2019. URL: https://
www.similartech.com/categories/payment.

[142] Skeuomorphism. 30.03.2019. Techopedia Inc. URL: https://www.techopedia.com/
definition/28955/skeuomorphism.

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 215 / 244

https://medium.com/@mpreziuso/password-hashing-pbkdf2-scrypt-bcrypt-and-argon2-e25aaf41598e
https://medium.com/@mpreziuso/password-hashing-pbkdf2-scrypt-bcrypt-and-argon2-e25aaf41598e
https://www.thebalance.com/how-ach-payments-work-315441
https://www.thebalance.com/how-ach-payments-work-315441
https://github.com/stefanprodan/dockprom
https://github.com/stefanprodan/dockprom
https://prometheus.io/
https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_router_and_filter_zuul
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_router_and_filter_zuul
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_router_and_filter_zuul
https://rxjs-dev.firebaseapp.com/
https://doi.org/10.5958/0976-478X.2016.00012.4
https://crackstation.net/hashing-security.htm
https://crackstation.net/hashing-security.htm
https://www.flickr.com/photos/samsungtomorrow/24806330129
https://www.flickr.com/photos/samsungtomorrow/24806330129
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_service_discovery_eureka_clients
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_service_discovery_eureka_clients
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#_service_discovery_eureka_clients
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#spring-cloud-eureka-server
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#spring-cloud-eureka-server
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#spring-cloud-eureka-server
https://developers.google.com/ar/develop/java/cloud-anchors/overview-android
https://developers.google.com/ar/develop/java/cloud-anchors/overview-android
https://www.cnet.com/news/the-future-of-ar-according-to-microsoft/
https://www.cnet.com/news/the-future-of-ar-according-to-microsoft/
https://www.vtt.fi/inf/pdf/science/2012/S3.pdf
https://www.vtt.fi/inf/pdf/science/2012/S3.pdf
https://www.similartech.com/categories/payment
https://www.similartech.com/categories/payment
https://www.techopedia.com/definition/28955/skeuomorphism
https://www.techopedia.com/definition/28955/skeuomorphism

Bibliography VIPER

[143] SOAP vs. REST: The Differences and Benefits Between the Two Widely-Used Web Service
Communication Protocols. 2019/04/01. Stackify. URL: https://stackify.com/soap-
vs-rest/.

[144] Spencer Gibb. How is Spring Cloud Gateway different from Zuul? 2019/04/01. Stack-
overflow. URL: https://stackoverflow.com/questions/47092048/how-is-spring-
cloud-gateway-different-from-zuul.

[145] Spring. Spring testing documentation. 05.04.2019. URL: https://docs.spring.io/
spring/docs/current/spring-framework-reference/testing.html.

[146] Spring Boot features - Testing. 2019/04/01. Pivotal Software, Inc. URL: https://docs.
spring.io/spring-boot/docs/current/reference/html/boot-features-testing.
html.

[147] Spring Cloud. 2019/04/01. Pivotal Software, Inc. URL: https://spring.io/projects/
spring-cloud.

[148] Spring Cloud Config. 2019/04/01. Pivotal Software, Inc. URL: https://spring.io/
projects/spring-cloud-config.

[149] Spring Data. 2019/04/01. Pivotal Software, Inc. URL: https://spring.io/projects/
spring-data.

[150] Spring Data JPA - Reference Documentation. 2019/04/01. Pivotal Software, Inc. URL:
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/.

[151] statcounter.Mobile and Tablet iOS Version Market Share Worldwide. 26.02.2019. stat-
counter. URL: http://gs.statcounter.com/ios-version-market-share/mobile-
tablet/worldwide.

[152] std::future. 2019/04/01. cppreference.com. URL: https://en.cppreference.com/w/
cpp/thread/future.

[153] std::promise. 2019/04/01. cppreference.com. URL: https://en.cppreference.com/w/
cpp/thread/promise.

[154] Stripe. Stripe Website. 03.04.2019. URL: https://stripe.com.

[155] TheTop 10 videoGameEngines. 2019/04/01. GameDesign. URL: https://www.gamedesigning.
org/career/video-game-engines/.

[156] The Ultimate VR Headset Comparison Table: Every VR Headset Compared. 7.04.2019.
ThreeSixtyCameras. URL: http : / / www . threesixtycameras . com / vr - headset -
comparison-table/.

[157] The world’s leading real-time creation platform. 27.02.2019. Unity Technologies. URL:
https://unity3d.com/unity.

[158] Toggl. 2019/04/01. Toggl. URL: https://toggl.com/.

[159] Travel VR: Explore the world on your couch. 31.1.2018. OmniVirt. URL: https://www.
omnivirt.com/blog/top-travel-tourism-virtual-reality-vr-examples.

[160] Travel VR: Explore the world on your couch. 31.1.2018. OmniVirt. URL: https://www.
omnivirt.com/blog/top-travel-tourism-virtual-reality-vr-examples.

[161] TravisCI. TravisCI Website. 03.04.2019. URL: https://travis-ci.com/.

216 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

https://stackify.com/soap-vs-rest/
https://stackify.com/soap-vs-rest/
https://stackoverflow.com/questions/47092048/how-is-spring-cloud-gateway-different-from-zuul
https://stackoverflow.com/questions/47092048/how-is-spring-cloud-gateway-different-from-zuul
https://docs.spring.io/spring/docs/current/spring-framework-reference/testing.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-testing.html
https://spring.io/projects/spring-cloud
https://spring.io/projects/spring-cloud
https://spring.io/projects/spring-cloud-config
https://spring.io/projects/spring-cloud-config
https://spring.io/projects/spring-data
https://spring.io/projects/spring-data
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
http://gs.statcounter.com/ios-version-market-share/mobile-tablet/worldwide
http://gs.statcounter.com/ios-version-market-share/mobile-tablet/worldwide
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/future
https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/promise
https://stripe.com
https://www.gamedesigning.org/career/video-game-engines/
https://www.gamedesigning.org/career/video-game-engines/
http://www.threesixtycameras.com/vr-headset-comparison-table/
http://www.threesixtycameras.com/vr-headset-comparison-table/
https://unity3d.com/unity
https://toggl.com/
https://www.omnivirt.com/blog/top-travel-tourism-virtual-reality-vr-examples
https://www.omnivirt.com/blog/top-travel-tourism-virtual-reality-vr-examples
https://www.omnivirt.com/blog/top-travel-tourism-virtual-reality-vr-examples
https://www.omnivirt.com/blog/top-travel-tourism-virtual-reality-vr-examples
https://travis-ci.com/

VIPER Bibliography

[162] Trion - ng-cli-karma docker container. 07.04.2019. DockerHub. URL: https://hub.
docker.com/r/trion/ng-cli-karma/.

[163] Type definitions for braintree-web package. 07.04.2019. Braintree. URL: https://www.
npmjs.com/package/@types/braintree-web.

[164] Unity Lincense Pricing. 7.04.2019. Unity Technologies. URL: https://store.unity.
com/.

[165] Unity Test Runner. 07.03.2019. Unity. Mar. 2018. URL: https://docs.unity3d.com/
Manual/testing-editortestsrunner.html.

[166] Unreal Engine EULA. 24.04.2019. Epic Games Inc. URL: https://www.unrealengine.
com/en-US/eula.

[167] Using HTTP Methods for RESTful Services. 2019/04/01. RestApiTutorial.com. URL:
https://www.restapitutorial.com/lessons/httpmethods.html.

[168] Virtual Reality in Education. 7.04.2019. Avantis Systems Ltd. URL: http://www.classvr.
com/virtual-reality-in-education/.

[169] Virtual Reality in Military. 7.04.2019. ThinkMobiles. URL: https://thinkmobiles.
com/blog/virtual-reality-military/.

[170] A. Visconti and F. Gorla. “Exploiting an HMAC-SHA-1 optimization to speed up
PBKDF2”. In: IEEE Transactions on Dependable and Secure Computing (2018), pp. 1–1.
ISSN: 1545-5971. DOI: 10.1109/TDSC.2018.2878697.

[171] Vuforia AR Features. 13.03.2019. PTC. URL: https://vuforia.com/features.

[172] Wikitude SDK Full Features Overview. 13.03.2019. Wikitude. URL: https : / / www .
wikitude.com/products/wikitude-sdk-features/.

[173] Working with Spring Data Repositories. 2019/04/01. Pivotal Software, Inc. URL: https:
//docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/
html/repositories.html.

[174] ZenHub. 2019/04/01. ZenHub. URL: https://www.zenhub.com/.

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 217 / 244

https://hub.docker.com/r/trion/ng-cli-karma/
https://hub.docker.com/r/trion/ng-cli-karma/
https://www.npmjs.com/package/@types/braintree-web
https://www.npmjs.com/package/@types/braintree-web
https://store.unity.com/
https://store.unity.com/
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://www.unrealengine.com/en-US/eula
https://www.unrealengine.com/en-US/eula
https://www.restapitutorial.com/lessons/httpmethods.html
http://www.classvr.com/virtual-reality-in-education/
http://www.classvr.com/virtual-reality-in-education/
https://thinkmobiles.com/blog/virtual-reality-military/
https://thinkmobiles.com/blog/virtual-reality-military/
https://doi.org/10.1109/TDSC.2018.2878697
https://vuforia.com/features
https://www.wikitude.com/products/wikitude-sdk-features/
https://www.wikitude.com/products/wikitude-sdk-features/
https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html
https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html
https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html
https://www.zenhub.com/

List of Figures VIPER

List of Figures

2.1 Standalone solution software architecture . 20
2.2 Cloud solution component diagram. 21

4.1 VR application showing the Eiffel Tower in Paris[159] 27
4.2 A head mounted display (HMD)[160] . 28
4.3 Beatsaber, a VR game [20] . 29
4.4 Samsung Gear 360 [135] . 32
4.5 Mockup of the VR Showroom . 35
4.6 Final Layout . 37
4.7 Initial View of the Showroom . 38
4.8 Wall and Floor Textures . 38
4.9 Entrance Area and Authentication Panel . 39
4.10 Object and Assigned Tag . 40
4.11 Camera Pointer . 43
4.12 Panel displaying the Selected Objects . 43
4.13 Panel for Selecting a Payment Account . 43
4.14 Panel for Authentication . 43

5.1 AR example with text-layers hovering over a rocket-prototype[86] 47
5.2 AR-dragon at Riot Games’ League of Legends World Championship 2017[31] 48
5.3 Example QR Code for the website https://viperpayment.com/ 51
5.4 An example for geographical positions (background courtesy of GoogleMaps) 52
5.5 Example for marker-less AR with Snapchat’s Bitmoji[73] 53
5.6 Example for marker-less AR with Pokémon GO[27] 53
5.7 A fictional example of using complex augmentations in a military training

session . 54
5.8 Mockup of the start menu . 60
5.9 Mockup of the application displaying the first virtual object 60
5.10 Mockup of the application displaying the second virtual object 60
5.11 Mockup of the buying screen for the second virtual object 61
5.12 Mockup for the payment-accounts screen . 61
5.13 Mockup of the verification-screen . 61
5.14 Login screen of the application . 61
5.15 Start menu of the application . 61
5.16 Settings screen on an Android device (notice the general settings) 64
5.17 Settings screen on any device but Android . 64

218 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

https://viperpayment.com/

VIPER List of Figures

5.18 Design of the first application . 65
5.19 Old design provided byWikitude (the key can only be used for the demo, it is

unusable for our demo) . 65
5.20 Displaying a selected item (in this case a couch) 65
5.21 Functionality of a raycast [104] . 66
5.22 Scaling the application . 67
5.23 Initial position of the object before the rotation happens 68
5.24 Rotation of the object after performing a rotation on the screen (with the angle

made visible) . 68
5.25 Selecting the object and seeing the trash can 69
5.26 Dragging the object to the trash can and deleting it 69
5.27 Comparison between dragging an element in and placing it into the centre via

clicking . 70
5.28 The tutorial for the first application which consists of five different pages . . 71
5.29 Example for a Quick Response-code (QR-code) which works with VIPER’s QR-

demo . 72
5.30 Example for the Toast message which states that the user “user1” logged in

successfully . 73
5.31 Example of the display that shows the different selections 73
5.32 Example of selecting a payment account via the AR-demonstration. The first

account is selected automatically . 74
5.33 Verification screen with a pin as the verification method 74
5.34 Verification screen with a pattern as the verification method 74

6.1 Example of a monolithic application [42]. 80
6.2 Example of a mirco-service architecture [97]. 81
6.3 Overview of the Viper microservices. 83
6.4 Single database architecture . 89
6.5 single persistence servie architecture . 90
6.6 one database per serive architecture . 90
6.7 Authentication Service database . 105
6.8 Diagram of a Wire transfer. 120
6.9 A diagram of the typical Automated Clearing House (ACH) operations [108]. 121
6.10 Typical payment flow of a Payment Service Provider (PSP) [70]. 122
6.11 Diagram of a centralized payment flow. 125
6.12 Diagram of a indirect payment flow. 126
6.13 Diagram of the top 15 PSPs by market share. 127
6.14 Flow of a payment request via the payment broker. 129
6.15 Flow of a transaction request to the Braintree service. 131
6.16 Diagram of the steps involving the Braintree Server [24]. 134
6.17 Basic schema of the customer and developer web service 138
6.18 Entity Relationship Diagram (ERD) of the customer web service’s database . 139
6.19 ERD of the developer web service’s database 141
6.20 Comparison of Virtual machines and containers [45]. 144
6.21 Diagram of Gitlab-CI [64]. 148
6.22 UML class diagram of the client library . 154

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 219 / 244

List of Figures VIPER

7.1 Example of a FAB button . 158
7.2 Example of ripples in a container . 159
7.3 Color palette of VIPER . 160
7.4 Colors in theMaterial.io Color Tool[67] . 161
7.5 Merriweather Font - Serif . 162
7.6 Roboto Font - Sans Serif . 162
7.7 Information, Home, Shopping Cart Icons . 162
7.8 Snippet to compare frameworks . 163
7.9 Image of the frontpage . 168
7.10 Image of the login page . 169
7.11 Snackbar to notify user . 170
7.12 Client register form . 170
7.13 Developer register - Organization setup step 171
7.14 Developer register - finish step . 171
7.15 Developer Dashboard . 173
7.16 Developer statistics page . 175
7.17 Create application dialog . 175
7.18 Create product dialog . 175
7.19 Product page . 176
7.20 Developer applications page . 177
7.21 Developer accounts page . 177
7.22 Developer payment accounts page . 177
7.23 Braintree Drop-in UI . 181
7.24 Create Payment Form . 181
7.25 Example Document Object Model (DOM) tree 185

8.1 Graphic illustration of the waterfall model . 192
8.2 Life cycle of an agile project management method 193
8.3 Viper Meeting Protocol Layout . 195
8.4 Toggl diagram of all work that was done for this project 197

220 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER List of Tables

List of Tables

5.1 Feature comparison of different SDKs . 57
5.2 Manual testing protocol - a full version of the protocol can be seen in the

appendix (Table 9.1) . 76

6.1 The table above shows that Braintree is clearly the best choice as a PSP. . . . 129
6.2 Estimated required resources for the services. 142

9.1 Manual testing protocol . 227

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 221 / 244

Listings VIPER

Listings

4.1 Splash Screen Transition . 36
4.2 Using Unity’s Raycast . 39
4.3 Movement Implementation . 40
4.4 Object Selection . 41
4.5 Showing, Hiding Objects . 41
4.6 Signature of the fading method . 42
4.7 Canvas Fade Implementation . 42
4.8 Importing the Client Library . 44
4.9 Logging the User in . 44
4.10 Receive Payment Accounts . 44
4.11 Execute Payment . 45

5.1 LoginSync-method that logs in the user using its name and password 62
5.2 ChangeScene-method that allows the user to load a new scene and change to it 62
5.3 Automatically log in the user if an account is saved at Android’s Account-Manager 63
5.4 Implemented functionality of Android’s Account-Manager (with create, remove

and read) . 63
5.5 Translate an object from one position to another given by the movement of the

user . 67
5.6 Check if the user moved his finger while touching the screen 68
5.7 Remove the possibility to drag and add the click-listener 69
5.8 Remove all objects from the screen . 70
5.9 Reset the grid and go back to tracking-state 71
5.10 Check the data (saved as a string) in the recognized QR-code whether it is correct 72
5.11 The payment method with its parameters . 75
5.12 Callback method after finishing the payment process 76
5.13 Example of a test in Unity’s Test Runner . 77
5.14 Example of a setup-method which is called at the very beginning 77

6.1 MongoDB docker-compose configuration . 92
6.2 MongoDB configuration to enable authorization 93
6.3 MongoDB configuraiton needed to enable SSL for communication 93
6.4 Spring Data MongoDB Maven dependency . 94
6.5 Lazy and eager loading of referenced objects 94
6.6 MongoDB ObjectId field . 95
6.7 Definition of a compound index . 95
6.8 Definition of a repository interface . 95

222 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Listings

6.9 Spring Data Repository methods . 96
6.10 Autowiring repositories . 96
6.11 Annotations of a Representational State Transfer (ReST) controller 98
6.12 ReST endpoint annotiations . 99
6.13 Feign Maven dependency . 99
6.14 ReST endpoint and the corresponding Feign client mehtod 100
6.15 Autowiring a Feign client interface . 100
6.16 Feign Apache HttpClient Maven dependency 100
6.17 Ignore all services to prevent automatic route generation by Zuul 103
6.18 Configuration of Zuul routes . 103
6.19 Example of a configuration to disallow traffic to certain endpoints 104
6.20 Storing a new user in the database of the Authentication Service 106
6.21 Automatically logging in a newly created user by returning a JSON Web Token

(JWT) in the authorization header . 106
6.22 Spring Security Maven dependency . 106
6.23 Basic structure of the Spring Security configuration class 107
6.24 Authentication Service security configuration to add the authentication filter 109
6.25 Attepting to authenticate a user using their credentials 109
6.26 Creation of a new JWT . 110
6.27 AuthenticationManager configuration . 110
6.28 Retrieving the customer account to authenticate a user 111
6.29 Spring Security configuration of the Gateway Service enabling the JWT authen-

ticaiton filter . 111
6.30 Validation of the JWTs . 112
6.31 Adding a custom ID header to every request 113
6.32 Spring Security configuration to only allow communication over Hypertext

Transfer Protocol Secure (HTTPS) . 114
6.33 Spring SSL configuration . 114
6.34 Spring Security CORS configuration . 115
6.35 Maven dependency of the Spring Cloud Config Server 116
6.36 Config service Git repository configuration 116
6.37 Maven dependency of the Spring Cloud Config client 117
6.38 Configuration of a Spring Cloud Config client 117
6.39 Spring Cloud Netflix Eureka Server Maven dependency 117
6.40 Eureka Server zone configuration . 118
6.41 Eureka Client Maven dependency . 118
6.42 Eureka Client zone configuration . 118
6.43 Authorizing user-initiated transaction . 130
6.44 Sending a transaction to a payment service 130
6.45 Creating and saving a transaction object . 130
6.46 Organization account object . 132
6.47 Customer account object . 132
6.48 Client token creation . 133
6.49 Matching nonces to assoicated payment methods 135
6.50 Transaction object . 135
6.51 Order object . 136
6.52 Creation of a shareable nonce . 136

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 223 / 244

Listings VIPER

6.53 Setup of a transaction request . 137
6.54 Adding line items . 137
6.55 Execution of a transaction . 137
6.56 Conversion of a feign.Response to a Response object 140
6.57 Hashing and verification of a payment method authentication code 140
6.58 Example docker file . 145
6.59 Typical docker file for a microservice . 145
6.60 Typical docker-compose file for a microservice 146
6.61 Deploy script . 147
6.62 Microservice .gitlab-ci.yml config . 149
6.63 docker-compose services for monitoring . 150
6.64 Spring Boot Testing class . 152
6.65 The most important parts of making a Hypertext Transfer Protocol (HTTP)

request with the cpprestsdk . 155
6.66 Build HTTP requests for the cpprestsdk . 155
6.67 Using C++ promises and futures to make an asynchronous method synchronous156
6.68 Setting the promise value if no callback is provided 156

7.1 JavaScript example to render a simple list . 163
7.2 Comparison of TypeScript classes to JavaScript classes 166
7.3 Code for the login process . 168
7.4 SCSS classes for the progress display . 171
7.5 Example of a step component call . 172
7.6 Example of a canvas for ng2-charts . 174
7.7 Example configuration for ng2-charts . 174
7.8 User manger login method . 178
7.9 User manager isUserLoggedInmethod . 179
7.10 ngx-braintree installation command . 180
7.11 Configuration of the ngx-braintree tag . 180
7.12 Importing the router module . 182
7.13 Example routes configuration . 182
7.14 RouterModule import in AppModule . 183
7.15 router-outlet tag . 183
7.16 Example of routes with child routes . 183
7.17 Example method to gather route parameters 184
7.18 Method to access route data . 184
7.19 Example of the simple Jasmine syntax . 186
7.20 Configuration of headless browsers . 186
7.21 Command to install Android support for Karma 187
7.22 Configuration for a real Android browser . 187
7.23 Command to start testing . 187
7.24 Command to start end-to-end testing . 188
7.25 Karma configuration . 188
7.26 Protractor multiple browser support . 188
7.27 Command to build the Angular application 189
7.28 Command to build the Angular application 190

224 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Listings

9.1 Testing a ReST interface in Spring . 228
9.2 Example of a document class . 229
9.3 Example of a Feign client . 230
9.4 Full security configuration of the authentication service 231
9.5 The authentication filter used to authentication users and create new JWTs . 233
9.6 The user details service used to retrieve user infromation form the database . 235
9.7 The authentication filter used to authorize requests at the gateway service . 237
9.8 Zuul filter that blocks forbidden requests and adds an ID header to all request 239
9.9 Configuration of the Eureka Server . 241
9.10 Eureka Client configuration . 242
9.11 Basic structure of any HTTP request made with the cpprestsdk 244

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 225 / 244

Listings VIPER

Appendix

A Augmented Reality

A.1 Protocol for manual testing

Input Expected Output Actual Output

1 Start the applica-
tion

See the login screen Login screen visible Y

2 Click the "Skip lo-
gin and try demo-
version"-button

Start menu + welcome
message

Start menu seen and short infor-
mation about active user

Y

3 Click "logout"-
button

Return to login screen Login screen visible Y

4 Login with "user1"
(username) and
"1234" (password)

Start menu + welcome
message

Start menu seen and same wel-
come message as with skipping

Y

5 Click on settings See settings screen Settings-screen visible Y

6 Click the "Back"-
button

Return to start menu Start menu visible Y

7 Click on "Buy vir-
tual items"

First demo starts (with
tutorial)

Shows screen that says "AR-
Demo 1: Buy virtual items"

Y

8 Click on "Start" /
"Next" / "Let’s go"

Shows the actual demo
(with grid)

Shows the demo with a "Trial"-
overlay

Y

9 Move the phone
around

The grid turns green The grid turns green Y

10 Click the initialize
button

The grid locks in at a spe-
cific point + buttons ap-
pear at the bottom

Grid does not move around any-
more but stands still; also, but-
tons appear on the bottom

Y

11 Drag a button onto
the grid

A virtual object appears
and is placed on the grid

Virtual object appears and is
placed on the grid

Y

226 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Listings

12 Click on the object Frame appears around
the object

Frame appears around the ob-
ject (sometimes a bit buggy)

Y

13 Drag the object
around

Object moves around Object moves relative to the fin-
ger

Y

14 Scale the object
with two fingers

Object changes size Object changes size Y

15 Rotate the object
with two fingers

Object rotates Object rotates (very fast) Y

16 Drag object to the
trash can

Object disappears Object disappears Y

17 *Click the clear all
items button

All objects disappear All objects disappear Y

18 Click the reset but-
ton

Grid resets from locked
state

Grid unlocks and is now freely
movable again

Y

19 **Click "Purchase
Items"-button

Screen with selected
item(s) appears

Background darkens and screen
with selected item appears

Y

20 Click on "Purchase"-
button

Displays select-
payments screen

Displays select-payments
screen with one available
payment-option

Y

21 Click on "Select"-
button

Displays verification
screen

Displays verification-screen Y

22 Insert password
"1234"

Verification finishes suc-
cessfully

Verification finishes success-
fully

Y

23 ***Insert password
"9876"

Verification finishes with
an error

Verification finishes with an
error-message

Y

24 Close the applica-
tion and reopen it

Start menu with login
message

Start menu with login message
for "user1"

Y

25 Click on "Buy real
items"-button

Second application starts Blank screen with "trial"-
messages starts

Y

26 Scan QR-code See 19.**** Payment process finishes Y

Table 9.1: Manual testing protocol

* Insert multiple objects before input
** Insert object and click on it before input
*** Repeat steps 19-21 before input
**** Also do steps 19-22 + 23 afterwards

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 227 / 244

Listings VIPER

“Y” ... test succeeds
“N” ... test fails

B Back End and System Design

B.1 Testing

1 @RunWith(SpringRunner.class)
2 public class TestController {
3 TestRestTemplate restTemplate = new TestRestTemplate ();
4 HttpHeaders headers = new HttpHeaders ();
5 @Test
6 public void testGetPaymentAccounts () throws Exception {
7 HttpEntity <String > entity = new HttpEntity <String >(null ,

headers);
8 ResponseEntity <String > response = restTemplate.exchange(
9 createURLWithPort("/accounts"), HttpMethod.GET , entity , String

.class);
10 String expected = "{\"id\":1 ,\" description \":\"My Account \"}";
11 JSONAssert.assertEquals(expected , response.getBody (), false);
12 }
13 }

Listing 9.1: Testing a ReST interface in Spring

228 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Listings

B.2 Database

1 @Document
2 public class User {
3

4 @Id
5 private ObjectId _id;
6

7 @NotNull
8 private Name name;
9

10 private boolean verified;
11

12 @DBRef(lazy = true)
13 private Map <String , UserSetting > userSettings;
14

15 private Map <String , PaymentMethod > paymentMethods;
16

17

18 public User() {
19 this.verified = false;
20 this.paymentLock = false;
21 this.userSettings = new HashMap <>();
22 this.paymentMethods = new HashMap <>();
23 }
24

25 // Getter and setter methods were removed
26 }

Listing 9.2: Example of a document class

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 229 / 244

Listings VIPER

B.3 Feign Client

1 @FeignClient("authentication")
2 public interface AuthenticationService {
3

4 @PostMapping("user")
5 feign.Response createUser(@RequestBody UserCredentials

credentials);
6

7 @DeleteMapping("user/{id}")
8 Response deleteUser(@PathVariable("id") ObjectId id);
9

10 @PatchMapping("user/{id}")
11 Response updateUser(@PathVariable("id") ObjectId id,

@RequestBody Map <String , Object > changes);
12

13 @PatchMapping("user/{id}/pw")
14 Response changeUserPassword(@PathVariable("id") ObjectId id ,

ChangePasswordRequest request);
15

16 @GetMapping("test -con")
17 Response testConnection ();
18

19 @GetMapping("user/{id}")
20 Response <AuthenticationUserDetails > getUserDetails(

@PathVariable("id") ObjectId id);
21 }

Listing 9.3: Example of a Feign client

230 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Listings

B.4 Authentication Service

1 @EnableWebSecurity
2 public class SecurityConfig extends

WebSecurityConfigurerAdapter {
3

4 @Autowired
5 @Qualifier("UserDetailsServiceImpl")
6 private UserDetailsService userDetailsService;
7

8 @Autowired
9 private JwtConfig jwtConfig;
10

11 @Override
12 protected void configure(HttpSecurity http) throws Exception

{
13 http
14 .csrf().disable ()
15 // make sure we use stateless session
16 .sessionManagement ().sessionCreationPolicy(

SessionCreationPolicy.STATELESS)
17 .and()
18 // handle unauthorized attempts
19 .exceptionHandling ().authenticationEntryPoint ((req , rsp , e

) -> rsp.sendError(HttpServletResponse.SC_UNAUTHORIZED)
)

20 .and()
21 // Add a filter to validate user credentials
22 .addFilter(new JwtUsernameAndPasswordAuthenticationFilter(

authenticationManager (), jwtConfig))
23 .authorizeRequests ()
24 .antMatchers(HttpMethod.POST , jwtConfig.getUri ()).

permitAll ()
25 .antMatchers("/user /**").permitAll ()
26 .antMatchers("/dev/**").permitAll ()
27 .antMatchers("/app/**").permitAll ()
28 .antMatchers(HttpMethod.GET , "/test -con").permitAll ()
29 .antMatchers(HttpMethod.GET , "/actuator /**").permitAll ()
30 // any other requests must be authenticated
31 .anyRequest ().authenticated ();
32 }
33

34 // Spring has UserDetailsService interface , which can be
overridden to provide our implementation for fetching
user from database

35 @Override

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 231 / 244

Listings VIPER

36 protected void configure(AuthenticationManagerBuilder auth)
throws Exception {

37 auth.userDetailsService(userDetailsService).
passwordEncoder(sCryptPasswordEncoder ());

38 }
39

40 @Bean
41 public JwtConfig jwtConfig () {
42 return new JwtConfig ();
43 }
44

45 @Bean
46 public SCryptPasswordEncoder sCryptPasswordEncoder () {
47 return new SCryptPasswordEncoder ();
48 }
49 }

Listing 9.4: Full security configuration of the authentication service

232 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Listings

1 public class JwtUsernameAndPasswordAuthenticationFilter
extends UsernamePasswordAuthenticationFilter {

2

3 private AuthenticationManager authManager;
4

5 private final JwtConfig jwtConfig;
6

7 public JwtUsernameAndPasswordAuthenticationFilter(
AuthenticationManager authManager , JwtConfig jwtConfig) {

8 this.authManager = authManager;
9 this.jwtConfig = jwtConfig;
10 }
11

12 @Override
13 public Authentication attemptAuthentication(

HttpServletRequest request , HttpServletResponse response)
throws AuthenticationException {

14 try {
15 // 1. Get credentials from request
16 UserCredentials userCredentials = new ObjectMapper ().

readValue(request.getInputStream (), UserCredentials.
class);

17

18 // 2. Create auth object for auth manager
19 UsernamePasswordAuthenticationToken authToken = new

UsernamePasswordAuthenticationToken(userCredentials.
getIdentification (), userCredentials.getPassword (),
Collections.emptyList ());

20

21 // 3. Authentication manager authenticate the user
22 return authManager.authenticate(authToken);
23

24 } catch (IOException e) {
25 throw new RuntimeException(e);
26 }
27 }
28

29 // Upon successful authentication , generate a token
30 @Override
31 protected void successfulAuthentication(HttpServletRequest

request , HttpServletResponse response , FilterChain chain ,
Authentication auth) throws IOException ,

ServletException {
32 String token = createJwt(auth.getName (),
33 auth.getAuthorities ().stream ().map(

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 233 / 244

Listings VIPER

GrantedAuthority :: getAuthority).collect(
Collectors.toList ()),

34 jwtConfig.getExpiration (),
35 jwtConfig.getSecret ());
36

37 // Add token to header
38 response.addHeader(jwtConfig.getHeader (), jwtConfig.

getPrefix () + token);
39 }
40

41 public static String createJwt(String sub , List <String > auth
, int exp , String secret) {

42 long now = System.currentTimeMillis ();
43

44 return Jwts.builder ()
45 .setSubject(sub)
46 .claim("authorities", auth)
47 .setIssuedAt(new Date(now))
48 .setExpiration(new Date(now + exp * 1000))
49 .setIssuer("com.viper.service.authentication")
50 .signWith(SignatureAlgorithm.HS512 , secret.getBytes ())
51 .compact ();
52 }
53 }

Listing 9.5: The authentication filter used to authentication users and create new JWTs

234 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Listings

1 @Service
2 public class UserDetailsServiceImpl implements

UserDetailsService {
3

4 @Autowired
5 private DeveloperRepository developerRepository;
6

7 @Autowired
8 private UserRepository userRepository;
9

10 @Override
11 public UserDetails loadUserByUsername(String identification)

throws UsernameNotFoundException {
12 List <GrantedAuthority > grantedAuthorities = new ArrayList

<>();
13

14 Optional <User > optionalUser = userRepository.
findByEmailOrUsername(identification , identification);

15

16 if(optionalUser.isPresent ()) {
17 User user = optionalUser.get();
18

19 grantedAuthorities.add(new SimpleGrantedAuthority("
ROLE_USER"));

20

21 return new org.springframework.security.core.userdetails
.User(user.get_id ().toHexString (), user.getPassword ()
, grantedAuthorities);

22 } else {
23 Optional <Developer > optionalDeveloper =

developerRepository.findByEmail(identification);
24

25 if (optionalDeveloper.isPresent ()) {
26 Developer developer = optionalDeveloper.get();
27

28 grantedAuthorities.add(new SimpleGrantedAuthority("
ROLE_DEV"));

29

30 if (developer.isAdmin ())
31 grantedAuthorities.add(new SimpleGrantedAuthority("

ROLE_ADMIN"));
32

33 return new org.springframework.security.core.
userdetails.User(developer.get_id ().toHexString (),
developer.getPassword (), grantedAuthorities);

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 235 / 244

Listings VIPER

34 } else {
35 throw new UsernameNotFoundException("Identification "

+ identification + " not found");
36 }
37 }
38 }
39 }

Listing 9.6: The user details service used to retrieve user infromation form the database

236 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Listings

B.5 API Gateway Service

1 public class JwtTokenAuthenticationFilter extends
OncePerRequestFilter {

2

3 private final JwtConfig jwtConfig;
4

5 public JwtTokenAuthenticationFilter(JwtConfig jwtConfig) {
6 this.jwtConfig = jwtConfig;
7 }
8

9 @Override
10 protected void doFilterInternal(HttpServletRequest request ,

HttpServletResponse response , FilterChain chain) throws
ServletException , IOException {

11 // 1. get the authentication header
12 String header = request.getHeader(jwtConfig.getHeader ());
13

14 // 2. validate the header and check the prefix
15 if(header == null || !header.startsWith(jwtConfig.

getPrefix ())) {
16 // If not valid , go to the next filter
17 chain.doFilter(request , response);
18 return;
19 }
20

21 // 3. Get the token
22 String token = header.replace(jwtConfig.getPrefix (), "");
23

24 // exceptions might be thrown in creating the claims if
for example the token is expired

25 try {
26 // 4. Validate the token
27 Claims claims = Jwts.parser ()
28 .setSigningKey(jwtConfig.getSecret ().getBytes ())
29 .parseClaimsJws(token)
30 .getBody ();
31

32 String id = claims.getSubject ();
33 if(id != null) {
34 @SuppressWarnings("unchecked")
35 List <String > authorities = (List <String >) claims.get("

authorities");
36

37 // 5. Create auth object
38 UsernamePasswordAuthenticationToken auth = new

UsernamePasswordAuthenticationToken(id, null ,

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 237 / 244

Listings VIPER

authorities.stream ().map(SimpleGrantedAuthority ::
new).collect(Collectors.toList ()));

39

40 // 6. Authenticate the user
41 SecurityContextHolder.getContext ().setAuthentication(

auth);
42 }
43

44 } catch (Exception e) {
45 // In case of failure. Making sure it's clear
46 SecurityContextHolder.clearContext ();
47 }
48

49 // go to the next filter in the filter chain
50 chain.doFilter(request , response);
51 }
52

53 }

Listing 9.7: The authentication filter used to authorize requests at the gateway service

238 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Listings

1 public class AuthFilter extends ZuulFilter {
2

3 private static Logger log = LoggerFactory.getLogger(
AuthFilter.class);

4

5 private static List <String > adminRestricted = new ArrayList <
String >(){{

6 add("org");
7 add("dev");
8 add("payment");
9 }};
10

11

12 @Override
13 public String filterType () {
14 return "pre";
15 }
16

17 @Override
18 public int filterOrder () {
19 return 0;
20 }
21

22 @Override
23 public boolean shouldFilter () {
24 RequestContext ctx = RequestContext.getCurrentContext ();
25 HttpServletRequest request = ctx.getRequest ();
26

27 return request.getUserPrincipal () != null;
28 }
29

30 @Override
31 public Object run() {
32 RequestContext ctx = RequestContext.getCurrentContext ();
33 HttpServletRequest request = ctx.getRequest ();
34

35 if(! authorize(request)) {
36 ctx.setSendZuulResponse(false);
37 ctx.setResponseStatusCode(HttpStatus.SC_FORBIDDEN);
38 }
39

40 ctx.addZuulRequestHeader("ID", request.getUserPrincipal ().
getName ());

41

42 return null;

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 239 / 244

Listings VIPER

43 }
44

45 private boolean authorize(HttpServletRequest request) {
46 @SuppressWarnings("unchecked")
47 List <GrantedAuthority > roles = (List <GrantedAuthority >)

SecurityContextHolder.getContext ().getAuthentication ().
getAuthorities ();

48

49 String path = request.getServletPath ();
50

51 String base = path.substring (1);
52 int si = base.indexOf('/');
53

54 String endpoint;
55

56 if(si >= 0) {
57 endpoint = base.substring(si + 1);
58 if(endpoint.indexOf('/') >= 0)
59 endpoint = endpoint.substring(0, endpoint.indexOf('/')

);
60

61 base = base.substring(0, si);
62 } else {
63 endpoint = "/";
64 }
65

66 switch (base) {
67 case "api":
68 case "customer":
69 if(! request.isUserInRole("USER"))
70 return false;
71

72 break;
73 case "developer":
74 if(! request.isUserInRole("DEV"))
75 return false;
76

77 if(adminRestricted.contains(endpoint) && !request.
isUserInRole("ADMIN"))

78 return false;
79 }
80

81 return true;
82 }
83 }

Listing 9.8: Zuul filter that blocks forbidden requests and adds an ID header to all request

240 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Listings

B.6 Eureka service

1 # server port
2 server.port =8761
3

4 # logging
5 logging.level.root=info
6

7 # management endpoint configuration
8 management.endpoints.enabled -by-default=false
9 management.endpoint.health.enabled=true
10 management.endpoint.info.enabled=true
11 management.endpoints.web.exposure.include=health ,info
12

13 # Eureka server configuration
14 # ---------------------------
15

16 # configuration for a single Eureka server
17 eureka.client.register -with -eureka=false
18 eureka.client.fetch -registry=false
19

20 # zone configuration
21 eureka.client.region=at-vie -1
22 eureka.client.availability -zones.at-vie -1= default
23 eureka.client.service -url.defaultZone=http:// localhost :8761/

eureka/
24 eureka.instance.metadata -map.zone=default
25

26 # cache configuration
27 eureka.server.retention -time -in-m-s-in-delta -queue =120000
28 eureka.server.delta -retention -timer -interval -in-ms =15000
29 eureka.server.response -cache -auto -expiration -in-seconds =120
30 eureka.server.disable -delta=false
31

32 # self preservation configuration
33 eureka.server.enable -self -preservation=false
34 eureka.server.renewal -percent -threshold =0.7
35 eureka.server.renewal -threshold -update -interval -ms =30000

Listing 9.9: Configuration of the Eureka Server

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 241 / 244

Listings VIPER

B.7 Eureka Client

1 # server port
2 server.port =8000
3

4 # management endpoint configuration
5 management.endpoints.enabled -by-default=false
6 management.endpoint.info.enabled=true
7 management.endpoint.health.enabled=true
8 management.endpoints.web.exposure.include=health ,info
9

10 # Eureka client configuration
11 # ---------------------------
12

13 # Eureka server connection configuration
14 eureka.client.register -with -eureka=true
15 eureka.client.use -dns -for -fetching -service -urls=false
16 eureka.client.should -unregister -on-shutdown=true
17 eureka.client.allow -redirects=true
18 eureka.client.filter -only -up-instances=true
19

20 # zone configuration
21 eureka.client.prefer -same -zone -eureka=true
22 eureka.client.region=at-vie -1
23 eureka.client.availability -zones.at-vie -1= default
24 eureka.client.service -url.default=http:// 194.182.175.254:8761/

eureka
25 eureka.client.service -url.defaultZone=http:// localhost :8761/

eureka
26

27 # healthcheck configuration
28 eureka.client.healthcheck.enabled=true
29 eureka.client.heartbeat -executor -exponential -back -off -bound =10
30 eureka.client.on-demand -update -status -change=true
31

32 # registry fetch configuration
33 eureka.client.fetch -registry=true
34 eureka.client.registry -fetch -interval -seconds =15
35 eureka.client.cache -refresh -executor -exponential -back -off -

bound =10
36

37 # instance info replication configuration
38 eureka.client.instance -info -replication -interval -seconds =15
39 eureka.client.initial -instance -info -replication -interval -

seconds =30
40

41 # timeouts configuration

242 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

VIPER Listings

42 eureka.client.eureka -server -read -timeout -seconds =4
43 eureka.client.eureka -server -connect -timeout -seconds =3
44 eureka.client.eureka -connection -idle -timeout -seconds =25
45

46 # Eureka instance configuration
47 # -----------------------------
48

49 # metadata configuration
50 eureka.instance.metadata -map.zone=default
51

52 # IP configuration
53 eureka.instance.prefer -ip-address=true
54 eureka.instance.ip-address=${HOST_IP}
55

56 # ports configuration
57 eureka.instance.non -secure -port =8000
58 eureka.instance.secure -port =8443
59 eureka.instance.non -secure -port -enabled=true
60 eureka.instance.secure -port -enabled=false

Listing 9.10: Eureka Client configuration

Ebenstein, Fuchs, Liebmann, Matouschek, Strasser 243 / 244

Listings VIPER

B.8 Client Library

1 json::value body_data;
2 body_data[L"property"] = json::value(L"value");
3

4 http_request request(methods ::POST);
5 request.set_body(body_data);
6

7 bool *success = new bool [1];
8 success [0] = false;
9

10 http_client(L"https ://api.viperpayment.com/path/to/endpoint").
request(request)

11 .then ([=](http_response response) -> pplx::task <
http_response > {

12 if (response.status_code () == status_codes ::OK)
13 success [0] = true;
14

15 return pplx:: task_from_result(response);
16 })
17 .then ([=](pplx::task <http_response > previous_task) {
18 if (success [0]) {
19 try {
20 ...
21 }
22 catch (const http_exception& e) {
23 wostringstream ss;
24 ss << e.what() << endl;
25 wcout << ss.str();
26

27 success [0] = false;
28 }
29 }
30

31 delete [] success;
32 });

Listing 9.11: Basic structure of any HTTP request made with the cpprestsdk

244 / 244 Ebenstein, Fuchs, Liebmann, Matouschek, Strasser

	Introduction
	Design Concept
	Business Potential
	Virtual Reality
	Augmented Reality
	Back End and System Design
	Web Application
	Project Management
	Conclusion and future work
	Glossary
	Acronyms
	Bibliography

